
Detection and Visualization
of Performance Variations

to Guide Identification of Application Bottlenecks

Center for Information Services and High Performance Computing

Matthias Weber et al.
Presenter: Ronny Brendel
PSTI Workshop, Philadelphia, 16th August, 2016

 2

Contents
• Introduction
• Methodology

• Identifiy Time-Dominant Functions
• Analyze Runtime Imbalances
• Visualize Runtime Imbalances

• Case Study
• Load-Imbalance – COSMO-SPECS
• Process Interruption – COSMO-SPECS+FD4
• Floating-Point Exception – WRF

• Conclusion
• Sources

 3

Introduction
• Complexity of HPC systems is ever-increasing
• This creates challenges performance analysis

• Analysis techniques with different granularities and goals exist
• Detailed execution recordings are well-suited for detecting

performance variation across processes and/or time

• Automatic problem search visualization-based analysis↔

• We provide a new visualization-based approach for detecting
performance problems

 4

Introduction
• Assumptions:

• Processes exhibit similar runtime behavior – SPMD
• Processes execute the same code repeatedly – iterations

• The duration of iterations should be similar between processes
as well as between iterations on the same process

• If iterations vary in duration, this might indicate a performance
problem (runtime imbalance / performance variation)

• Our approach detects such imbalances and highlights iterations
with notably higher duration

 5

Introduction
• We use execution traces [1,2] as the basis of analysis

• Time-stamped events, in particular function enter & exit
• Timeline-based visualizations [3-5]
• Post-mortem analysis

• Approach:
1. Identify dominant functions
2. Compare runtime of them across iterations and processes
3. Visualize these differences

 6

Contents
• Introduction
• Methodology

• Identifiy Time-Dominant Functions
• Analyse Runtime Imbalances
• Visualize Runtime Imbalances

• Case Study
• Load-Imbalance – COSMO-SPECS
• Process Interruption – COSMO-SPECS+FD4
• Floating-Point Exception – WRF

• Conclusion
• Sources

 7

Identify Time-Dominant Functions
• Goal: Identify recurring parts of an application execution to then

compare the runtime of these segments

• What are suitable segments?

• Functions with a large inclusive time
• Inclusive time is the time spent in a function including time

spent in subfunctions

 8

Identify Time-Dominant Functions
• Taking the function with just the largest inclusive time doesn‘t

work, for example:

• Time-dominant function:= Function with the highest aggregated
inclusive time which is called at least 2p times, where p is the
number of processes

 9

Analyze Runtime Imbalances
• Goal: Detect shifts in execution time of segments

• Assumptions:
• If an application slows down, likely the time-dominant

function runs longer
• Outlier behavior likely impacts the runtime of the time-

dominant function

 10

Analyze Runtime Imbalances
• Directly comparing segments has a shortcoming:

• Included Communication time can even out variations

 11

Analyze Runtime Imbalances
• Therefore, ignore synchronization time

• Synchronisation-oblivious segment time (SOS-time)

 12

Visualize Runtime Imbalances
• Implemented in Vampir [5]

• Present SOS-time as a per-process counter

 13

Contents
• Introduction
• Methodology

• Identifiy Time-Dominant Functions
• Analyse Runtime Imbalances
• Visualize Runtime Imbalances

• Case Study
• Load-Imbalance – COSMO-SPECS
• Process Interruption – COSMO-SPECS+FD4
• Floating-Point Exception – WRF

• Conclusion
• Sources

 14

Load-Imbalance
• COSMO-SPECS [6]:

• COSMO: Regional weather forecast model
• SPECS: Cloud Micro-physics simulation

 ■ MPI, ■ SPECS, ■ COSMO, ■ Coupling

 15

Load-Imbalance
• COSMO and SPECS use the same static domain decomposition

• Cloud microphysics workload heavily depends on cloud shape

 16

Load-Imbalance

 17

Process Interruption
• COSMO-SPECS+FD4 [7]: Load-balancing for COSMO-SPECS

• First analysis detected that only few iterations are slow
• Second run only recorded slow iterations. Focus on one of them

 ■ MPI, ■ Dropped, ■■ SPECS, messages╱

 18

Process Interruption
• Process 20‘s time-dominant function has a larger SOS-time
• But where exactly is the time spent? Refine by picking a different function for the→

metric

 19

Process Interruption
• One sub-iteration is very slow
• The total number of cycles per second

during its runtime is ~150M/s vs
1500M/s in other iterations

 → Process is interrupted
• Operating system influence

 20

Floating-Point Exception
• WRF [8]:

• Benchmark case: 12km CONUS

 ■ MPI, ■ dynamical core, ■ physical parameterization

 21

Floating-Point Exception
• Varying runtime of the time-dominant function across processes
• Process 39 stands out

 22

Floating-Point Exception
• The function which takes

longer is floating-point-
intensive

• Number of floating-point
exceptions is very high on
slow processes

 23

Conclusion
• Effective, light-weight approach that facilitates visual analysis of

performance data, i.e. helps find runtime imbalances

• First, identifies the recurring function with the largest impact
on overall program runtime

• Second, calculates the execution time for each invocation of
this function, excluding synchronization time

• Highlights performance variations by visualizing this
synchronization-oblivious segment time

• We demonstrated its effectiveness with three real-world use cases

 24

Future Work
• Use structural clustering [9] to only compare processes doing

similar work (e.g. categorize processing elements into process,
thread, CUDA thread, ...)

 25

References
• [1] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H.

Mix, and W. E. Nagel. Developing Scalable Applications with
Vampir, VampirServer and VampirTrace. In Parallel Computing:
Architectures, Algorithms and Applications, ParCo 2007,
Forschungszentrum Jülich and RWTH Aachen University,
Germany, 4-7 September 2007, pages 637–644, 2007.

• [2] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff, K. Diethelm, D.
Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S.
Shende, R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf. Score-P:
A Joint Performance Measurement Run-Time Infrastructure for
Periscope, Scalasca, TAU, and Vampir. In Tools for High
Performance Computing 2011, pages 79–91. Springer Berlin
Heidelberg, 2012.

 26

References
• [3] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A Tool

to Visualize and Analyze Parallel Code. In Proceedings of WoTUG
18: Transputer and occam Developments, pages 17–31, March
1995.

• [4] Intel Trace Analyzer and Collector. http://software.intel.com/
en-us/articles/intel-trace-analyzer, Aug. 2016.

• [5] H. Brunst and M. Weber. Custom Hot Spot Analysis of HPC
Software with the Vampir Performance Tool Suite. In Proceedings
of the 6th International Parallel Tools Workshop, pages 95–114.
Springer Berlin Heidelberg, September 2012.

http://software.intel.com/

 27

References
• [6] V. Grützun, O. Knoth, and M. Simmel. Simulation of the

influence of aerosol particle characteristics on clouds and
precipitation with LM-SPECS: Model description and first results.
Atmospheric Research, 90(24):233–242, 2008.

• [7] M. Lieber, V. Grützun, R. Wolke, M. S. Müller, and W. E.
Nagel. Highly Scalable Dynamic Load Balancing in the
Atmospheric Modeling System COSMO-SPECS+FD4. In Proc.
PARA 2010, volume 7133 of LNCS, pages 131–141, 2012.

 28

References
• [8] G. Shainer, T. Liu, J. Michalakes, J. Liberman, J. Layton,

O. Celebioglu, S. A. Schultz, J. Mora, and D. Cownie. Weather
Research and Forecast (WRF) Model Performance and Profiling
Analysis on Advanced Multi-core HPC Clusters. In 10th LCI
International Conference on High-Performance Clustered
Computing, 2009.

• [9] Brendel, R., et al. Structural Clustering: A New Approach to
Support Performance Analysis at Scale. No. LLNL-CONF-669728.
Lawrence Livermore National Laboratory (LLNL), Livermore, CA,
2015.

	Slide_1
	Slide_2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

