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Introduction
• Complexity of HPC systems is ever-increasing
• This creates challenges performance analysis

• Analysis techniques with different granularities and goals exist
• Detailed execution recordings are well-suited for detecting

performance variation across processes and/or time

• Automatic problem search  visualization-based analysis↔

• We provide a new visualization-based approach for detecting
performance problems
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Introduction
• Assumptions:

• Processes exhibit similar runtime behavior – SPMD
• Processes execute the same code repeatedly – iterations

• The duration of iterations should be similar between processes 
as well as between iterations on the same process

• If iterations vary in duration, this might indicate a performance
problem  (runtime imbalance / performance variation)

• Our approach detects such imbalances and highlights iterations
with notably higher duration
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Introduction
• We use execution traces [1,2] as the basis of analysis

• Time-stamped events, in particular function enter & exit
• Timeline-based visualizations [3-5]
• Post-mortem analysis

• Approach:
1. Identify dominant functions
2. Compare runtime of them across iterations and processes
3. Visualize these differences
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Identify Time-Dominant Functions
• Goal: Identify recurring parts of an application execution to then

compare the runtime of these segments

• What are suitable segments?

• Functions with a large inclusive time
• Inclusive time is the time spent in a function including time 

spent in subfunctions
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Identify Time-Dominant Functions
• Taking the function with just the largest inclusive time doesn‘t

work, for example:

• Time-dominant function:= Function with the highest aggregated
inclusive time which is called at least 2p times, where p is the
number of processes
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Analyze Runtime Imbalances
• Goal: Detect shifts in execution time of segments

• Assumptions:
• If an application slows down, likely the time-dominant 

function runs longer
• Outlier behavior likely impacts the runtime of the time-

dominant function
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Analyze Runtime Imbalances
• Directly comparing segments has a shortcoming:

• Included Communication time can even out variations
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Analyze Runtime Imbalances
• Therefore, ignore synchronization time

• Synchronisation-oblivious segment time (SOS-time)
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Visualize Runtime Imbalances
• Implemented in Vampir [5]

• Present SOS-time as a per-process counter
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Load-Imbalance
• COSMO-SPECS [6]:

• COSMO: Regional weather forecast model
• SPECS: Cloud Micro-physics simulation

 ■ MPI, ■ SPECS, ■ COSMO, ■ Coupling
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Load-Imbalance
• COSMO and SPECS use the same static domain decomposition

• Cloud microphysics workload heavily depends on cloud shape
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Load-Imbalance
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Process Interruption
• COSMO-SPECS+FD4 [7]: Load-balancing for COSMO-SPECS

• First analysis detected that only few iterations are slow
• Second run only recorded slow iterations. Focus on one of them

 ■ MPI, ■ Dropped, ■■ SPECS,  messages╱
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Process Interruption
• Process 20‘s time-dominant function has a larger SOS-time
• But where exactly is the time spent?  Refine by picking a different function for the→

metric
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Process Interruption
• One sub-iteration is very slow
• The total number of cycles per second

during its runtime is ~150M/s vs
1500M/s in other iterations

 → Process is interrupted
• Operating system influence
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Floating-Point Exception
• WRF [8]:

• Benchmark case: 12km CONUS

 ■ MPI, ■ dynamical core, ■ physical parameterization
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Floating-Point Exception
• Varying runtime of the time-dominant function across processes
• Process 39 stands out
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Floating-Point Exception
• The function which takes

longer is floating-point-
intensive

• Number of floating-point
exceptions is very high on
slow processes
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Conclusion
• Effective, light-weight approach that facilitates visual analysis of

performance data, i.e. helps find runtime imbalances

• First, identifies the recurring function with the largest impact 
on overall program runtime

• Second, calculates the execution time for each invocation of 
this function, excluding synchronization time

• Highlights performance variations by visualizing this 
synchronization-oblivious segment time

• We demonstrated its effectiveness with three real-world use cases
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Future Work
• Use structural clustering [9] to only compare processes doing

similar work (e.g. categorize processing elements into process,
thread, CUDA thread, ...)
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