
Center for Information Services and High Performance Computing (ZIH)

User Library Wrapping
for Score-P

Ronny Brendel, Bert Wesarg, Sebastian Öste (TU Dresden)

15th Dec 2016, Ostrava, IT4I

Performance Optimization and Productivity Tutorial

 2

Contents

Motivation

What Does This Gromacs Run Do?

How To Trace It

– Score-P Installation

– Create FFTW Wrapper

– Build and Execute Gromacs

The Trace

Non-admin / User Perspective

Conclusion & Future Work

 3

Motivation

Score-P works only with relinking (and most of the time requires
recompiling) the whole application

– User Library Wrapping is one step towards analyzing unmodified
executables

You cannot see calls to libraries (without manual instrumentation)

You could lower measurement overhead and tracefile size

– scorep-score filtering workflow could be avoided

 4

What Does This Gromacs Run Do

Tutorial: Lysozyme in Water (Author: Justin A. Lemkul, Ph.D.)

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-
tutorials/lysozyme/index.html

Lysyzome: Enzymes that damage bacterial cell walls

Give a protein into a box of water, add ions and let it react

– Define Molecules (Protein and Solvent)

– Define Box and Solvate

– Add Ions

– Prepare Molecular Dynamics Simulation

● Energy Minimization
● Equilibration

– Calculate Molecular Dynamics

– Analysis

 5

How To Trace It > Score-P Installation

Enable library wrapping via –-with-llvm=$LLVM_ROOT during the
configure step

Unsure if it is enabled?

– $ scorep-info config-summary

– Search for „libwrap“

 6

How To Trace It > Create FFTW Wrapper

Execute $ scorep-libwrap-init for directions

Tell scorep-libwrap-init how you would compile and link an
application using FFTW

$ scorep-libwrap-init \
 –-name=fftw \
 --prefix=$PREFIX \
 -x c \
 --cppflags=“-O3 -DNDEBUG -openmp -I$FFTW_INC“ \
 --ldflags=“-L$FFTW_LIB“ \
 --libs=“-lfftw3f -lfftw3“ \
 working_directory

$ cd working_directory
$ ls # (Check README.md for instructions)
$ make # Generate and build wrapper
$ make check # See if header analysis matches symbols
$ make install #
$ make installcheck # More checks: Linking etc.

 7

How To Trace It > Build Gromacs

Build Gromacs twice, once normal, once with Score-P and libwrap

$ module load intel fftw papi bullxmpi #Taurus TU-Dresden

$ mkdir BUILD && cd BUILD

$ SCOREP_WRAPPER=off \
 cmake \
 -DCMAKE_CXX_COMPILER=scorep-icpc \
 -DCMAKE_C_COMPILER=scorep-icc \
 -DCMAKE_INSTALL_PREFIX=$PREFIX \
 -DGMX_MPI=on \
 -DGMX_GPU=off \
 -DFFTWF_INCLUDE_DIR=$FFTW_INC \
 -DFFTWF_LIBRARY=$FFTW_LIB/libfftw3f.so \
 ..

$ make \
 SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--
libwrap=runtime:fftw --thread=omp --mutex=omp
--nocompiler" \
 SCOREP_WRAPPER_COMPILER_FLAGS="-D_GNU_SOURCE"

 8

How To Trace It > Execute Gromacs

This Gromacs run consists of 14 steps

Run all of them normal and only the final molecular dynamics run
with the instrumented installation

SCOREP_ENABLE_TRACING=yes
SCOREP_TOTAL_MEMORY=300M
SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_TOT_CYC # for IPC

 9

The Trace > Overview

MPI+OpenMP

Some sync

FFTW!

Simple to trace!

Low overhead!

Only 300MB

Full trace >300GB

No filtering necessary
since only threading,
MPI and FFTW has
been traced!

 10

The Trace > Instructions Per Cycle

Up to 6 max (which is about
right)

Mostly around 2-3

Very high IPC on process 0

● Why is that? Zoom in.

 11

The Trace > Instructions Per Cycle

6 IPC in MPI_Reduce :(

→ Busy waiting

→ High IPC doesn‘t always
mean your code does well

 12

The Trace > Instructions Per Cycle

IPC during iterations

– Overlay timeline with
performance data or not

Differing IPC → Visualize to
gain insight into your code‘s
efficiency

 13

Non-admin / User Perspective

Ideally, the administrators already installed wrappers for certain
libraries

Use scorep --help or

scorep-info libwrap-summary [--full] [wrappername]

to query which wrappers are installed

Link with:

– scorep --libwrap=[wrapmode:][wrappername] $CC ...

 14

Conclusions

Simple to wrap a C/C++ library

– Works even if you don‘t have the source

Simple to use

Smaller trace, lower overhead

– No filtering / scorep-score needed

Calls to your library are visible

Ideal for recording performance counters, since the granularity is
more coarse than full trace runs and calls to the library are
recorded

Download:

https://cloudstore.zih.tu-dresden.de/index.php/s/2FBnJbUwp5LjcBe

https://cloudstore.zih.tu-dresden.de/index.php/s/2FBnJbUwp5LjcBe

 15

Future Work

Since events from unknown threads are not supported, in general
it is necessary to recompile and link the whole application

– Remove this requirement, since in principle you could use
library wrapping without modifying the executable

Improve C++ handling

– C++ can be problematic because LLVM doesn‘t provide
everything we need at the moment

 16

Thank you!

