
Visual Comparison of Trace Files in Vampir

Matthias Weber1, Ronny Brendel2, Michael Wagner1,3, Robert Dietrich1,
Ronny Tschüter1, and Holger Brunst1

1 Technische Universität Dresden, Germany
{matthias.weber, robert.dietrich, ronny.tschueter,

holger.brunst}@tu-dresden.de
2 Oak Ridge National Laboratory, USA

brendelr@ornl.gov
3 Barcelona Supercomputing Center, Spain

michael.wagner@bsc.es

Abstract. Comparing data is a key activity of performance analysis. It
is required to relate performance results before and after optimizations,
while porting to new hardware, and when using new programming mod-
els and libraries. While comparing profiles is straightforward, relating
detailed trace data remains challenging.
This work introduces the Comparison View. This new view extends the
trace visualizer Vampir to enable comparative visual performance anal-
ysis. It displays multiple traces in one synchronized view and adds a
range of alignment techniques to aid visual inspection. We demonstrate
the Comparison View’s value in three real-world performance analysis
scenarios.

Keywords: alignment, comparison, performance analysis, tracing, vi-
sualization

1 Introduction

HPC application developers need to leverage the potential performance of mod-
ern HPC computing systems. Increasingly complex hardware configurations as
well as software systems make achieving this goal ever more challenging. Per-
formance analysis tools aid developers in obtaining better scalability, tracking
down bottlenecks, and in general enable detailed understanding of the perfor-
mance characteristics of applications.

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to
do so, for US government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

http://energy.gov/downloads/doe-public-access-plan

2

Performance tools observe metrics about and behavior of a running appli-
cation and its underlying system. After an execution they present the obtained
performance data in text or through visualizations. Investigating application per-
formance typically involves comparing data between multiple application runs,
for example with varying number of processing elements, varying inputs, and
varying hardware configurations.

Performance data comes in two principal flavors: profiles and traces. Profiles
consist of aggregated performance data. For instance a flat profile summarizes
the number invocations and time spent for each function of an application. An-
other common form is the call path profile. It works similarly, but aggregates
information for a function call stack configuration, rather than a function and
disregarding its calling context. Comparing two profiles can be achieved by sub-
tracting the values of one profile from the other for each equal function (or call
path).

However, the ability of profiles to reveal performance problems is limited.
Many performance issues are dynamic in nature, and hard to detect in an ag-
gregated statistic. For example to see if load balance worsens over time, or a
performance flaw occurs only occasionally (and is thus averaged out), more de-
tailed performance data is needed.

Traces retain the chronological order of events, where profiles do not. This
more fine-grained performance data enables investigating dynamic behavior of
applications. However, displaying more data, makes investigating traces more
difficult. Comparing two traces is even more challenging, because two runs of the
same application can be very different. Possible reasons for this include timing
differences, reordered functions, partially removed stacks (due to e.g. function
inlining) and changes in dynamic application behavior.

In this work we introduce techniques to improve visual trace comparison.
Our contributions are:

– Vampir’s [2] Comparison View, which displays traces and statistics side by
side. It allows manual alignment of multiple traces on one common timescale
to simplify visual comparison.

– A heuristic to automatically align traces.
– A case study demonstrating the effectiveness of the Comparison View for

performance analysis of real-world applications.

All introduced techniques are available starting with the current Vampir and
VampirServer releases.

This work is organized as follows: Section 2 enumerates related work. Sec-
tion 3 presents our techniques and implementation. Section 4 shows how the
Comparison View aids performance understanding and improvement for three
real-world scientific applications. The last section summarizes our contribution
and highlights future development directions.

3

2 Related Work

Comparing performance data is a central activity in performance analysis. Con-
sequently, a wide range of research has been performed on this topic. Solutions
range from profile comparison techniques to advanced trace compression and
analysis schemes. The developed techniques can serve different purposes. For
example clustering algorithms can be used to compress data, automatically cat-
egorize it, or aid visualization.

Schulz and de Supinski’s [14] present a tool, based on GNU gprof, for com-
paring profiles between application runs. Song et al. [15] introduce an algebraic
framework for comparing profile-based performance data.

PerfExplorer [7] provides a framework for performance data mining. It al-
lows comparing runtime, relative speedup, and efficiency across different sets of
profiles.

Weber et al. developed techniques for structural comparison of performance
data. They introduced a hierarchical alignment algorithm [17] that compares
the structure of two traces. Building on that, they introduced alignment-based
comparison metrics [20] to highlight structural and temporal differences between
application runs. In subsequent work they developed a structural clustering al-
gorithm [18] that scalably classifies processing elements into groups of similar
behavior.

In the context of the performance analysis tool Paraver [13], Llort et al. [11]
use object tracking techniques to automatically detect changing performance
characteristics between application runs. Knüpfer et al. [9] propose the Com-
pressed Complete Call Graph structure for trace data. The technique identifies
similarities inside of and between processes to store trace data more efficiently.
This compressed storage is able to speed up various analysis operations, as well
as reveal repeating patterns in program execution.

Mohror and Karavanic [12] divide applications into segments. Based on the
similarity of these segments they compress the traces while retaining as much
crucial performance information as possible. Gamblin et al. [4] use an adapted
k-means clustering algorithm to scalably compress trace data.

Trace viewers like Vampir [2] and Intel Trace Analyzer [8] provide visual
analysis of trace data. Intel Trace Analyzer offers visual comparison of two traces,
but lacks the ability to align them. To compare trace it stretches both into the
same time frame. This leads to a rather unnatural representation of the trace,
making visual comparison challenging. Vampir supports folding timelines [19] to
save space and get an aggregate view of multi-processing element activity (e.g.
CUDA streams, or OpenMP threads) where appropriate. Edge bundling [1] is
a promising technique for aiding visual analysis and comparison of large-scale
communication traces.

4

3 Methodology

This section introduces a new Comparison View and its features for visual trace
file comparison. The Comparison View integrates all common performance charts
of Vampir and adds additional comparison functionality. To enable effective com-
parison of multiple trace files we couple and synchronize the zoom of the traces.
In Vampir the user can zoom into regions of a trace to investigate areas in more
detail. To compare areas of interest between traces, displayed trace regions need
to be freely shiftable in time. This allows for arbitrary alignments of the trace
files, and thus, enables visual comparison of user selected areas side by side.

The number of compared trace files is not limited by Vampir. However,
Vampir needs to load the complete data of all trace files into main memory. Thus,
the amount of available main memory becomes the limiting factor. In order to
compare large trace files exceeding the size of typically available memory on
workstations, users can employ VampirServer for the comparison. VampirServer
runs in parallel on an HPC machine. This component allows to harness the
distributed memory of a cluster for the comparison.

Fig. 1. The Comparison View showing three traces

Figure 1 shows the new Comparison View. We use three example trace files
to introduce its comparison functionality. The example traces show one test
application performing ten iterations of calculations. Each trace, respectively,
represents an execution of this application on a different machine.

5

Fig. 2. Open Comparison View

3.1 Comparing Application Characteristics using Charts

As indicated by the Navigation Toolbar, at the top in Figure 2, all three trace files
are included in the single Comparison View instance. The Navigation Toolbar
gives an overview of all open traces and provides an easy access for manipulating
the selected zoom area. The Comparison View provides timeline and statistic
charts (common charts of Vampir) for the comparison of performance metrics.
Colors in the charts represent different function calls, e.g., MPI calls are shown
in red, computations are shown in cyan (in this example). The Comparison View
opens one chart instance for each loaded trace file, i.e., one click on the Master
Timeline icon opens three Master Timeline charts. In order to distinguish charts
between traces, we assign a dedicated background color to all charts belonging
to one trace.

As shown in Figure 2, trace A exhibits the largest duration time. The duration
of trace C is so short that it is barely visible. Zooming into the compute iterations
of trace C (left side in Figure 2 at 0s) would make them visible and allow an
detailed inspection. However, due to the coupled zoom, zooming into the area
around 0s would also zoom into the MPI_Init phase in trace A and B. To visually
compare the compute iterations between all three traces, they need to be aligned
side by side. This necessitates an alignment method for the traces to facilitate a
meaningful visual comparison of related areas. We present the available options
for trace alignment in the following.

3.2 Aligning Traces Manually

The Comparison View allows to shift individual trace files in time. This enables
comparison of areas that did not occur at the same time. In our example the

6

Fig. 3. Coarse alignment of traces using the Navigation Toolbar

Fig. 4. Fine-grain alignment of traces directly in the Master Timeline

compute iterations need to be aligned prior to visual comparison because the
initialization of the application took different times on the three machines.

We provide several ways to shift trace files in time. One option is to directly
set the time offset of an individual trace using a context menu. The easiest way
to achieve a coarse alignment is to directly drag and drop (using the mouse) the
trace in the Navigation Toolbar. Figure 3 shows the compute iterations of all
example trace files coarsely aligned.

After the coarse shifting the Master Timeline allows a finer alignment directly
inside the chart. Therefore, the user can zoom into an area of interest and directly
align the traces by dragging with the mouse. Figure 4 depicts the process of
dragging trace C to the compute iterations of trace A and B.

As shown in Figure 4, although the initialization of trace A took the longest,
this machine was the fastest in computing the calculations.

3.3 Aligning Traces Automatically Using Predefined Markers

Markers in traces point to particular places of interest in the trace data. These
markers are useful for navigation in trace files. For trace file comparison markers
are interesting due to their potential to quickly locate places in large trace data
sets. They allow to quickly find the same location in multiple trace files.

The Marker View in Vampir provides a combined access to all markers con-
tained in the open trace files. Clicking a marker in the Marker View highlights the

7

t

Trace B
Process 0:

Trace C
Process 0:

Trace A
Process 0: a b

main

b cb
a

a
d

a b
main

b cb
a

a
d

a
main

c
a

a
c

main: 1
b: 3
c: 1

main: 1
b: 3
c: 1

main: 1
b: 0
c: 1

Fig. 5. Example showing the automatic alignment of three processes. Function c
(shown in red) in trace A is selected. Our heuristic finds the respective function invo-
cations in trace B and C and aligns all traces at that function. The function invocation
profiles for the selected functions (red line) are shown at the right side.

respective marker in the Master Timeline. Another way to navigate to a marker
in the timeline charts is to use the zooming functionality. Therefore, a user first
zooms into the desired zooming level. Clicking a marker in the Marker View will
then set the timeline chart to the marker position. Thus, the selected marker
appears in the center of the timeline chart. Moreover, the Marker View provides
two additional ways of navigating with markers. If two markers of one trace
are selected, the Comparison View sets the zoom to the according timestamps
of the markers. If two markers of different traces are selected, the Comparison
View adjusts the time offset between the respective traces and shows the se-
lected markers next to each other, and consequently, aligns both traces at the
respective markers.

3.4 Aligning Traces Automatically Using Call Invocation Profiles

In addition to manual alignment we also provide a heuristic that automatically
aligns traces. Using this heuristic users can select an interesting function in
one trace and have all other traces aligned automatically to that function. This
facilitates direct visual comparison by saving the user from manual aligning.

In this section we describe the alignment heuristic using the example shown
in Figure 5. In this example the user selected function c of Process 0 in Trace A
(marked red in the figure). To align Trace B and Trace C to that function, we
first select the corresponding process in the other traces. Therefore, we search
for a process with the name Process 0 in all open traces4. If no exact match
is found, we compute the Levenshtein distance [10] between names to find the
closest match.

In order to detect the corresponding invocations of function c in Trace B and
Trace C we employ an invocation profile based approach. For reference we first
4 This simple example contains only one process per trace. However, in parallel appli-
cations searching for the selected process is necessary.

8

generate the function invocation profile for Trace A. Therefore, we identify all
functions contained in the call stack of the selected function (red line in Trace
A in the figure). In our example these functions are main, b, and c. Then we
traverse Trace A and count all occurrences of these functions until we reach the
selected function. For Trace A this results in the following invocation profile
(also shown right of Trace A in Figure 5): main: 1 invocation, b: 3 invocations,
and c: 1 invocation.

For the alignment we then traverse Process 0 of Trace B and Trace C and try
to match their invocation profiles as good as possible with the profile of Trace A.
In case of a structurally identical traces (e.g., Trace A and Trace B), we find the
related function with a perfect match between both profiles, i.e., the difference
between the invocations of both profiles is zero: |mainTraceA −mainTraceB | +
|bTraceA − bTraceB |+ |cTraceA − cTraceB | = |1− 1|+ |3− 3|+ |1− 1| = 0. If both
profiles match, we stop searching and align both traces at the related functions.
In case of structural differences (e.g., Trace A and Trace C) we try to find
the position with the lowest possible error between both profiles. For instance,
when we reach the first function c in Trace C the corresponding profile is: main:
1 invocation, b: 0 invocations, and c: 1 invocation. This results in a profile
difference of 3: |mainTraceA − mainTraceC | + |bTraceA − bTraceC | + |cTraceA −
cTraceC | = |1− 1|+ |3− 0|+ |1− 1| = 3. When reaching the second invocation of
function c the profile changes to: main: 1, b: 0, and c: 2. This results in a profile
difference of 4: |mainTraceA − mainTraceC | + |bTraceA − bTraceC | + |cTraceA −
cTraceC | = |1 − 1| + |3 − 0| + |1 − 2| = 4. The second profile exhibits a higher
difference to the reference profile than the first profile. Thus, we stop searching
and select the first invocation of c as related function in Trace C.

The comparison of m trace files requires the traversal of m processes. The
complexity for the traversal of one process is O(n) with respect to the number
of recorded events (each function invocation consists of one enter and one leave
event) in the related process. Thus, in total the complexity for an alignment of
m processes is O(m ·n), assuming maximal n events in each process. In practice,
the computation of the heuristic does not introduce any noticeable lag in the
visualization of Vampir. Interestingly, the computation of a Function Summary
(profile view in the figures) in Vampir poses even higher requirements, involving
a full traversal of all processes of a trace5.

This approach improves the usability of the visual comparison. The heuristic
exactly aligns structurally equal processes. While not perfect, it is also suffi-
ciently robust to correctly align trace files in many cases of structural differences
between processes.

5 This example is not directly related to the alignment heuristic. It is only mentioned
here to contrast the computational requirements of the alignment heuristic with
common processing steps in Vampir.

9

Fig. 6. Overview of a 80-GPU LSMS run on Titan (white background) and Summitdev
(blue). The timeline display is on the left. Profiles are on the right.

4 Case Study

This section showcases how the comparison view benefits visual performance
analysis. Three real-world optimization scenarios demonstrate its wide appli-
cability. LSMS analyzes the performance impacts of different hardware on an
application. CloverLeaf compares several versions of an application executed
using different programming models. Trinity RNA-Seq Assembler performs a
comparative scalability study of an application and detects scalability bottle-
necks.

4.1 LSMS – Comparing Performance between Different Hardware

The Oak Ridge Leadership Computing Facility uses Vampir and its comparison
view for visual performance analysis to support porting applications from Titan
to Summit. The system employed for early development work is Summitdev.

These new systems bring a number of major changes. Some of them are:
Summitdev consists of 20 Power8+ cores and four NVIDIA P100 GPUs per
node. One P100 has four times the theoretical DPFLOPS peak performance
compared to the Tesla K20X used in Titan. One node has four GPUs instead
of one for Titan. The system supports CUDA MPS, which allows sharing GPUs
between multiple processes.

To explore how these differences affect the CORAL benchmark code LSMS [3]
visual performance analysis is vital. Figure 6 shows an LSMS run on 80 Titan
vs 20 Summitdev nodes. The total number of graphics cards for both is 80.

The vastly faster GPUs and the fact that each GPU has at most five CPU
threads paired (20 divided by 4), in comparison to 16 on Titan, cause the GPU-
accelerated function zblock_lu to speed up, while the non-GPU-enabled func-
tion buildKKRMatrix gains in relative execution time. Thus to further improve
LSMS’s performance, buildKKRMatrix is the new prime function to investigate.

To compare iterations in detail developers use the alignment functionality,
shown in Figure 7.

To gauge whether CUDA MPS can speed up LSMS, we run it with varying
numbers of threads and processes per node (Figure 8). The first run has four

10

Fig. 7. Detailed comparison of one iteration on Titan vs roughly 2.5 on Summitdev

MPI processes with four threads each. The second one has five threads each.
The third and fourth runs are 8 × 2, and 16 × 1, i.e. two and four processes
share one GPU. Strictly, LSMS is most resource-efficient if the total number
of threads and processes divides the number of simulated atoms evenly. But,
it turns out using all 20 cores in a four by five setup is faster than the other
variants, although it adds occasional waiting time on the “left-over” threads.
Note that 8 or 16 processes cannot evenly use 20 cores with the same number of
threads per process. Another interesting observation is that the increase in MPI
waiting time (more red in the green and cyan timelines) is negated by better
GPU utilization.

Summarizing our findings, GPU MPS uses the GPU more efficiently. But not
using four cores per node negates this advantage.

The comparison view highly improves visual comparative analysis. With its
help, we are able to gain a deeper understanding of LSMS’s changing perfor-
mance characteristics while transitioning to Summit.

4.2 CloverLeaf – Comparing Performance between Programming
Models

CloverLeaf is a hydrodynamics mini-app, which solves the compressible Euler
equations on a Cartesian grid with an explicit, second-order accurate method [6].
It is composed of small execution kernels, which simplifies the implementation
with different programming models. To accelerate the computation, the grid can
be split into parts and processed on multiple MPI processes, threads, and target
devices, which however requires a halo exchange and thus, data transfers.

This paper compares the CUDA and the OpenACC implementation6 on an
NVIDIA K80 GPU as target device. We ran all experiments with two MPI
processes, a fixed grid size of 1920 × 960 cells, and a fixed number of 87 time
steps. The test system was equipped with two Xeon E5-2680v3 CPUs at 2.5GHz
6 Available at http://uk-mac.github.io/CloverLeaf/, last accessed 26 September 2017

11

Fig. 8. Exploratory comparison of different process vs thread setups. White: 4 processes
times 4 threads per node. Blue: 4 processes times 5 threads. Green: 8 times 2. Cyan:
16 times 1.

and four K80 GPUs at fixed clock rates of 823MHz. We used the PGI 17.7
compilers for the OpenACC implementation and the Intel 16.0.2 compilers for
the CUDA implementation. The CUDA toolkit was installed in version 8.0.44.

Figure 9 compares runs of three different versions of CloverLeaf: the initial
OpenACC version (white background), the CUDA version (purple background),
and an improved OpenACC version with exclusive GPU usage (green back-
ground). The Navigation Toolbar at the top shows that the initial OpenACC
version takes almost twice as much time as the other runs, with regard to the
computation phase. A closer look into the execution exposes that it uses the
default offloading device on both MPI processes, which results in resource con-
tention with an MPI imbalance as further symptom. CUDA kernels, launched
by one MPI process, delay the kernel execution from the other process. Some
CUDA kernels, such as pdv_kernel_80_gpu, run concurrently on the GPU as
they do not fully utilize all compute resources. In the CUDA version and the
fixed OpenACC version, both MPI processes use one GPU exclusively, which
prevents resource contention and keeps the MPI imbalance negligible. Although
the CUDA version is comparatively fast, considering the total runtime, it reveals
optimization potential in the selected program phase. Costly cudaMalloc and
cudaFree calls, invoked by thrust library routines, could be avoided, especially
as they are nonexistent in the OpenACC implementations.

The automatic alignment of traces facilitates the review of small code changes.
Figure 10 shows the effect of an optimization in the halo exchange of the OpenACC
version. The traces have been aligned at function update_halo. The first op-
timization avoids two unnecessary host-to-device transfers per pack kernel,

12

Fig. 9. Comparison of different CloverLeaf implementations: initial OpenACC (top),
CUDA (middle), and improved OpenACC (bottom).

indicated by the two missing black lines in the optimized version (purple back-
ground). The second optimization replaces synchronous offloading of multiple
successive CUDA kernels or data transfers with asynchronous equivalents and a
collective synchronization. The effect is obvious for a set of successive kernels,
which update the halo on the GPU. They are executed one after another, with-
out the kernel trigger overhead in between. The same optimization has been
applied for the pack kernel and its following device-to-host transfer.

The comparison view helps porting applications to new programming APIs.
It allows users to spot runtime and structural differences, which finally helps
in detecting individual weak spots of implementations. Eventually, comparing
traces is useful to validate code optimizations.

4.3 Trinity RNA-Seq Assembler – Comparing Performance between
Different Process Numbers

In this section we highlight our efforts to analyze and optimize the RNA-Seq
assembler Trinity with the help of the Comparison View [16]. Trinity [5] is a
software framework for accurate de novo reconstruction of transcriptomes from
RNA-Seq data. Trinity is a pipeline of up to 27 individual components in different
programming and script languages, including C++, Java, Perl, and system bina-
ries, which are invoked by the main Trinity perl script. The pipeline consists of
three stages: first, Inchworm assembles RNA-seq data into sequence contigs, sec-
ond, Chrysalis bundles the Inchworm contigs and constructs complete de Bruijn

13

Fig. 10. Validation of code optimizations for the CloverLeaf OpenACC port

graphs for each cluster, and, third, Butterfly processes the individual graphs in
parallel and computes the final assembly.

Our analysis results refer to the release version 2.0.6, while many of our opti-
mizations were included in the release version 2.1.1. One of the main performance
issues that was identified is the poor intra-node scaling of the GraphFromFasta
module. GraphFromFasta is a key part of the Chrysalis stage that clusters the
Inchworm contigs and constructs complete de Bruijn graphs for each cluster.

The intra-node parallelism using OpenMP showed very poor scalability by
achieving a speed up of only 2.27 with a full 16-core node in comparison to the
version with only one core [16]. To further investigate this issue we analyzed
the parallel intra-node behavior.We recorded application traces with 1, 2, 4,
8, and 16 OpenMP threads using manual instrumentation of code regions in
the main loop. Figure 11 shows the recorded behavior in comparison for 1, 2,
4, 8, and 16 threads from top to bottom with white, red, yellow, green, and
blue background, respectively. The left side depicts the active code regions over
time on the horizontal axis and the executing threads on the vertical axis. The
summarized overview on the right side presents the accumulated runtime over
all threads for each code region.

The comparison view in Figure 11 reveals that the work load in the first
part of GraphFromFasta increases nearly linearly with the number of OpenMP
threads. Consequently, there is practically no parallel speed up with more than
two threads. We identified the root cause for this behavior being the frequent
creation and destruction of string stream objects within an inner loop of the mas-
sively called function is_simple. The string stream creation is internally locked
by a mutex, which produces excessive wait time since all threads simultaneously
created the string stream objects with a very high frequency. This is visible by
the increasing amount of time spent in the code region marked stringstreams,
from about 25s with one thread to 260s with 16 threads.

14

Fig. 11. Resource utilization of original Trinity 2.0.6 version

Fig. 12. Resource utilization of optimized Trinity version

15

Further investigation showed that the string stream creation can be moved
out of the inner loop by creating the string stream object before the loop and
only clearing the string streams in the inner loop. Consequently, we were able
to avoid the serialization in this critical section.

This optimization leads to a substantial increase in parallel performance and,
therefore, a remarkable reduced runtime for the first part of GraphFromFasta.
In addition to the better scaling, the serial runtime is reduced, as well; for the
analyzed test data set, the serial runtime decreases from 72s to 45s. Figure 12
shows the improved scaling of the optimized version. The parallel speed up is
increased to 8.9 instead of 2.3 with the unoptimized version.

During the analysis of Trinity the comparison functionality was pivotal in
understanding the parallel, intra-node behavior of the GraphFromFasta mod-
ule and in identifying and omitting the root causes of poor parallel scalability.
Equipped with this knowledge, we were able to introduce modifications resulting
in a speedup of 3.9 in the intra-node performance of the GraphFromFasta mod-
ule and in combination with other optimizations a 22% improvement in overall
run time.

5 Conclusions

This work introduces features for visual trace comparison in Vampir. Our contri-
butions enable simultaneous inspection of multiple traces in a synchronized Com-
parison View. This view is already available in current Vampir and VampirServer
releases. It greatly simplifies analyzing application performance for, i.a., differ-
ent input data sets, software versions, processing element setups and hardware
architectures.

We present three methods for synchronizing the zoom of multiple traces.
Users can align traces manually, automatically using predefined markers, and
via a heuristic that aligns according to the call profile. The latter method works
well even if the traces have diverging structure.

Three use cases demonstrate the wide applicability of the Comparison View
for performance analysis of real-world applications and highlight its benefits for
detailed visual comparison of performance data.

In this work we focus on visual comparison and structural alignment of multi-
ple traces. We intend to use this work as a basis for enhanced analysis approaches
which automatically analyze structural and temporal differences.

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility
at Oak Ridge National Laboratory, which is supported by the Office of Science
of the Department of Energy under Contract DE-AC05-00OR22725.

16

References

1. Brendel, R., Heyde, M., Brunst, H., Hilbrich, T., Weber, M.: Edge bundling for
visualizing communication behavior. In: Proceedings of the 3rd International Work-
shop on Visual Performance Analysis. pp. 1–8. IEEE Press (2016)

2. Brunst, H., Weber, M.: Custom Hot Spot Analysis of HPC Software with the
Vampir Performance Tool Suite. In: Proceedings of the 6th International Parallel
Tools Workshop, pp. 95–114. Springer (September 2012)

3. Eisenbach, M., Nicholson, D.M., Rusanu, A., Brown, G.: First principles calculation
of finite temperature magnetism in fe and fe3c. Journal of Applied Physics 109(7),
07E138 (2011)

4. Gamblin, T., de Supinski, B.R., Schulz, M., Fowler, R., Reed, D.A.: Clustering
Performance Data Efficiently at Massive Scales. In: Proceedings of the 24th ACM
International Conference on Supercomputing. pp. 243–252. ICS ’10, ACM, New
York, NY, USA (2010)

5. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I.,
Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen,
N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh,
K., Friedman, N., Regev, A.: Full-length Transcriptome Assembly from RNA-Seq
Data Without a Reference Genome. Nature Biotechnology 29(7), 644–652 (2011)

6. Herdman, J. A. et al.: Accelerating Hydrocodes with OpenACC, OpenCL and
CUDA. In: SC Companion: High Performance Computing, Networking Storage
and Analysis. pp. 465–471 (2012)

7. Huck, K.A., Malony, A.D., Shende, S., Morris, A.: Scalable, Automated Perfor-
mance Analysis with TAU and PerfExplorer. In: Proceedings of the 14th Confer-
ence on Parallel Computing (ParCo 2007). pp. 629–636 (2007)

8. Intel Trace Analyzer and Collector. http://software.intel.com/en-us/
articles/intel-trace-analyzer/ (Nov 2015)

9. Knüpfer, A., Voigt, B., Nagel, W.E., Mix, H.: Visualization of repetitive patterns
in event traces. In: Applied Parallel Computing. State of the Art in Scientific
Computing, pp. 430–439. Springer (2007)

10. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

11. Llort, G., Servat, H., González, J., Giménez, J., Labarta, J.: On the Usefulness
of Object Tracking Techniques in Performance Analysis. In: Proceedings of SC13:
International Conference for High Performance Computing, Networking, Storage
and Analysis. pp. 29:1–29:11. SC ’13, ACM, New York, NY, USA (2013)

12. Mohror, K., Karavanic, K.L.: Evaluating similarity-based trace reduction tech-
niques for scalable performance analysis. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. p. 55. ACM (2009)

13. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A Tool to Visualize
and Analyze Parallel Code. In: Proceedings of WoTUG-18: Transputer and occam
Developments. pp. 17–31 (March 1995)

14. Schulz, M., de Supinski, B.R.: Practical Differential Profiling. In: Proceedings of
the 13th international Euro-Par conference on Parallel Processing. pp. 97–106.
Euro-Par’07, Springer-Verlag, Berlin, Heidelberg (2007)

15. Song, F., Wolf, F., Bhatia, N., Dongarra, J., Moore, S.: An Algebra for Cross-
Experiment Performance Analysis. In: Proceedings of the 2004 International Con-
ference on Parallel Processing. pp. 63–72. ICPP ’04, IEEE Computer Society,
Washington, DC, USA (2004)

http://software.intel.com/en-us/articles/intel-trace-analyzer/
http://software.intel.com/en-us/articles/intel-trace-analyzer/

17

16. Wagner, M., Fulton, B., Henschel, R.: Performance Optimization for the Trinity
RNA-Seq Assembler, pp. 29–40. Springer (2016)

17. Weber, M., Brendel, R., Brunst, H.: Trace File Comparison with a Hierarchical
Sequence Alignment Algorithm. In: Proceedings of the 2012 IEEE 10th Interna-
tional Symposium on Parallel and Distributed Processing with Applications. pp.
247–254. ISPA ’12, IEEE Computer Society, Washington, DC, USA (July 2012)

18. Weber, M., Brendel, R., Hilbrich, T., Mohror, K., Schulz, M., Brunst, H.: Struc-
tural Clustering: A New Approach to Support Performance Analysis at Scale. In:
Proceedings of the 30th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 484–493. IEEE Computer Society (May 2016)

19. Weber, M., Geisler, R., Brunst, H., Nagel, W.E.: Folding Methods for Event Time-
lines in Performance Analysis. In: Proceedings of the 29th IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW). pp. 205–214.
IEEE Computer Society (May 2015)

20. Weber, M., Mohror, K., Schulz, M., de Supinski, B.R., Brunst, H., Nagel, W.E.:
Alignment-Based Metrics for Trace Comparison. In: Proceedings of the 19th In-
ternational Conference on Parallel Processing, pp. 29–40. Euro-Par’13, Springer-
Verlag, Berlin, Heidelberg (2013)

	Visual Comparison of Trace Files in Vampir

