
Edge Bundling for Visualizing
Communication Behavior

Ronny Brendel, Michael Heyde, Holger Brunst, Tobias Hilbrich and Matthias Weber

Center for Information Services and High Performance Computing
Technische Universität Dresden, Germany

{ronny.brendel, holger.brunst, tobias.hilbrich, matthias.weber}@tu-dresden.de, heyde.michael@googlemail.com

Abstract—To fully exploit the potential of today’s computers,
application developers need to design for concurrency. Along with
parallel execution new performance problems emerge. Developers
gain insight into application behavior by visualizing inter-process
communication in timelines. They use this insight to eliminate
performance bottlenecks. Timeline visualizations overlay function
call structure with communication information and additional
performance data. In many cases such visualizations suffer from
information overload and visual clutter that complicate analysis.

We address these problems by introducing techniques inspired
by hierarchical edge bundling into time-based communication vi-
sualization. Our visualization combines individual messages into
dominant communication paths and thereby highlights higher-
level structures. Furthermore, we introduce scalable visualiza-
tions for communication profiles, which offer an alternative view
on communication patterns. This work employs edge bundling
at unprecedented scale to address emerging problems in timeline
displays.

I. INTRODUCTION

Applications for High Performance Computing (HPC) sys-
tems employ parallelism to efficiently utilize the underlying
hardware. Since current architectures feature distributed mem-
ory, message passing is a common approach to enable paral-
lelism. The Message Passing Interface (MPI) [1] is the de-facto
standard for this purpose and enables many applications that
run on major HPC installations. Approaches to analyze and
visualize the use of message passing aid application developers
in their optimization and debugging workflows. Common tasks
include detecting slow messages, load imbalances, inefficient
communication patterns, and incorrect communication.

A common approach to support these tasks is to visualize
the runtime behavior of the target application. For this purpose,
timeline visualizations [2] display activities of individual pro-
cessing elements. Tool suites such as Intel Trace Analyzer [3],
Paraver [4] and Vampir [5] follow this idea and visualize
processing elements as horizontal bars. Colors represent dis-
tinct application states and lines depict messages exchanged
between processing elements. Fig. 1 presents two examples
of timeline displays for an application using 16 processes
(top) and an application with 1024 processes (bottom). This
approach works well in the first example, Fig. 1a, and helps
users identify individual communication phases. Users can
then zoom into a specific communication phase to inves-
tigate individual messages. Fig. 1b depicts an inadequate
visualization, where a large number of individual messages

(a) A normal example where message visualization—
black lines—efficiently highlights interesting program
behavior.

(b) An unfavorable example with a large number of
messages that provide little helpful information, while
hiding other parts of the chart.

Fig. 1. Timelines provide powerful visualization of the behavior and syn-
chronization of parallel applications, however, increased event densities can
be detrimental.

causes visual clutter. In this case, message visualization offers
little insight and hides a large portion of the chart beneath.
In situations as shown in Fig. 1b, visualizing all individual
messages is not helpful.

In this work, we present techniques to improve timeline
visualizations, as well as other types of charts, to provide
higher-level information. Our goal is to reduce message line
clutter and emphasize communication patterns. We borrow
ideas from edge bundling [6] which bends individual lines to-
wards each other, and thus form bundles, in order to highlight
dominant communication paths. A spline representation allows
lines to deviate from their original straight representation. Our
contributions include:

• A selection of real-world example applications with chal-
lenging communication patterns,



• The introduction of edge bundling into time-based com-
munication visualization. For this we apply edge bundling
to larger diagrams than any related work we are aware
of,

• An alternative edge bundling approach that routes edges
through a grid rather than a hierarchy, and

• An investigation of edge bundling for displays that sum-
marize communication behavior of parallel applications.

The remainder of this work is organized as follows: Sec-
tion II presents related work. We then discuss Vampir’s current
solution to combat message line occlusion and clutter in
Section III. Section IV introduces the example applications
we subsequently use. In Section V-A we explain in detail
how to incorporate edge bundling into time-based commu-
nication visualizations. This is followed by an investigation
into how edge bundling can improve communication profiles
in Section V-B. We then summarize our experience with edge
bundling and suggest future development directions.

II. RELATED WORK

The presented work lives in the context of the performance
visualization suite Vampir [5] and the corresponding moni-
tor Score-P [7]. Vampir is specialized in visualizing highly
parallel programs, and supports a multitude of paradigms,
for example: MPI, POSIX Threads, OpenMP, CUDA, and
SHMEM. By providing many different visualizations for
function-, communication-, performance counter-, and I/O-
related performance data, Vampir helps users find performance
problems and gain understanding of their applications’ perfor-
mance characteristics.
A. Edge Bundling

To reduce clutter and improve the visual appeal of trees
with an additional adjacency relation defined on its nodes,
Danny Holten introduced hierarchical edge bundling [6]. The
technique achieves this goal by bending lines along the given
hierarchy and therefore functions much like a cable harness.
Our presented work is mainly inspired by this approach.

Later, Holten lifted the constraint of needing a hierarchy for
edge bundling by introducing force-directed edge bundling [8].
In principle the technique assigns weight to edges and com-
putes gravitation, which than leads to edges being drawn
towards each other. Force-directed edge bundling yields a
much more natural bundling than hierarchical bundling but
is computationally more expensive.

Lambert et al. [9] present an alternative edge bundling
approach, where the basis for control polygons is a quadtree.
The quadtree resolution is finer in places where many lines
are present. Routing is done via the shortest path. To reduce
the computational demand, the authors introduce a hybrid
quadtree/Voronoi approach. Furthermore they show bench-
marks for an optimized CPU and an optimized GPGPU
implementation.

B. Performance Visualization Tools & Techniques

A wide array of techniques exists for performance visual-
ization and performance optimization [10]. One example for

(a) With bursts.

(b) Without bursts.

Fig. 2. Message bursts reduce the number of displayed message lines in
Vampir’s Master Timeline.

applied edge bundling, among other novel ideas, is the use
of circular hierarchies for performance visualization [11]. The
approach employs chord diagrams that incorporate information
of the hardware topology and performance metrics to intu-
itively visualize communicating processes.

Techniques to automatically detect computation phases [12]
provide an intuitive improvement for timeline visualizations.
This work defines computation phases to be time spans be-
tween communication operations. For these phases, the num-
ber of completed instructions is weighted against the elapsed
time. Phases differ in how many instructions they complete
in a given time window. This rate provides the input for a
clustering that signifies distinct computation phases. The use
of a visualization with per-cluster colors yields useful insights
into the application’s program structure. This approach works
under the assumption that the application is homogeneous or
of an SPMD structure.

Another take on time-based performance visualization is
to order execution traces logically rather than strictly by
time [13]. This allows a subsequent visualization that captures
the developer’s intended operation order better than usual
timelines. The communication structure of the application
determines the logical time. The logical time is then used
to highlight communication patterns, e.g. for comparing and
clustering similar processes. This visualization furthermore
presents time-based metrics, such as lateness, in the logical
program structure. Prior to this work, DeWiz [14] employed
a similar approach.

To reduce visual obstruction in timelines due to communi-
cation lines, Oracle Solaris Studio [15] implements a simple
slider for adjusting the number of visible messages.



Fig. 3. Lines going every which way gives little insight into program structure.

III. MOTIVATION

The current solution in Vampir to avoid occlusion of pro-
gram state information due to too many message lines is called
message burst. Fig. 2 depicts an example application with and
without message bursts. On a process, a burst consists of a
start time, an end time, and a set of messages it represents. It
signifies that a number of sending operations take place during
the duration of the burst.

While this technique is effective in reducing the amount
of message lines, it omits interesting information. Information
such as duration and the target process of the replaced mes-
sages are not available. Message bursts are by design sender-
oriented to enable a low-overhead mechanism that is scalable.

Fig. 3 shows a zoomed-in version of the timeline from
Fig. 1b. The chart highlights that communication takes place
and when it starts/ends, but it highlights no obvious commu-
nication pattern.

We suggest a time-based communication visualization that
employs edge bundling to improve the short-comings dis-
cussed above. Our goal is to preserve interesting information
while alleviating occlusion and reducing message line clutter.

IV. TEST CASES

We use three HPC applications to highlight the behavior
of our visualizations. The first application is from the WRF
Model [16]. The application run utilizes 16 processes and
sends about 160,000 point-to-point messages during a runtime
of four minutes. The corresponding execution trace is avail-
able at https://www.vampir.eu/public/files/tracefiles/Large.zip.
Fig. 1 and Fig. 2 depict Vampir’s Master Timeline that shows
zoomed-in portions of the overall trace.

The second application is FD4 [17], which introduces a dy-
namic load balancing scheme to couple the COSMO weather
forecast model with the SPECS [18], [19] cloud microphysics
scheme. In five minutes of runtime, FD4 exchanges about
2.2 million messages between 1,024 processes. This example
presents a test case with an irregular communication pattern,
resulting from the dynamic load balancing scheme, and an
increased process count. Fig. 1b and Fig. 3 visualize portions
of the run.

Finally, Tachyon [20] exhibits a single type of communi-
cation pattern only (Fig. 4). Processes only send messages
to process 0, which in turn only receives messages. Tachyon

Fig. 4. In Tachyon, every processes repeatedly sends intermediate results to
the first process. Here, the message visualization occludes almost all program
state information beneath.

is part of the SPEC MPI2007 benchmark suite [21] and im-
plements ray tracing for image rendering. The decomposition
of this application lets processes render parts of the image
independently. The first process then gathers the individual
results to combine them into the final image. Our example
run utilizes 256 processes and exchanges about 8000 messages
during a runtime of 20 minutes.

V. EDGE BUNDLING

This section initially demonstrates how edge bundling can
improve timeline communication visualization. We subse-
quently explore how the developed techniques can be used
to aid visualizing communication profiles.

A. Time-based Visualization

We use timeline visualizations as a promising target to apply
hierarchical edge bundling [6]. Fig. 5a depicts a timeline for
the full WRF run without any reduction techniques. Fig. 5b
and Fig. 5c show hierarchical edge bundles instead of straight
message lines. The charts arrange the 16 processes vertically
and let time run from left to right. We employ B-Splines
of an adjustable degree—we use a degree of two throughout
this paper—to represent the messages. To discern sender and
receiver processes, we color splines with a color gradient from
green (sender) to red (receiver). When splines overlap, we
apply alpha blending to emphasize dominant communication
paths.

We apply our hierarchical edge bundling as follows: in order
to create a hierarchy for the routing of the splines, we take all
send- and receive-events on their respective process and cluster
them using the mean shift [22] algorithm. The resulting cluster
centers constitute the lowest hierarchy level. We recursively
cluster the centers of each hierarchy layer to generate a full
hierarchy with a single root. Each hierarchy node is connected
to its cluster center, thus ultimately creating a tree. In our
prototype implementation we use an adjustable number of
hierarchy levels, which is set to three in the examples. The
mean shift algorithm then determines the number of clusters
per level. Each send-event creates a spline that starts at the
event, that we route through the hierarchy to the target receive-
event. To illustrate this scheme, Fig. 5c presents the cluster
centers of our hierarchy for the upper-left portion of the
timeline in Fig. 5b. The lowest hierarchy level uses blue boxes

https://www.vampir.eu/public/files/tracefiles/Large.zip


(a) Without edge bundling, and without message bursts.

(b) With hierarchical edge bundling.

(c) Zoomed-into version of Fig. 5b with visible hierarchy
nodes.

Fig. 5. The Master Timeline visualization for a WRF application run with
16 processes.

for the cluster centers and the next level uses magenta for its
centers.

The edge-bundled timeline saves screen space in com-
parison to directly visualizing messages as lines (Fig. 5a).
However, this visualization has shortcomings. Since messages
bend along tree edges, many messages have to bend along
the root node, i.e. the center of the timeline. As Fig. 5a
illustrates, few messages actually run through the center of the
visualization. Thus, our visualization with hierarchical edge
bundles can be misleading. In fact, in Fig. 5c, many messages
are bent towards the right only to be bent to the left again,
since our hierarchy dictates it. We therefore conclude that
hierarchical edge bundling produces unintuitive images and
is thus not ideal for timeline communication visualization.

As a result, routing large numbers of edges through the root
of the hierarchy is not desirable. Thus, we target a routing
directly through the lower hierarchy levels instead. For this
purpose we use a grid that creates the control polygons, instead
of a hierarchy. Fig. 6 shows the impact of this change for WRF.
Our lowest-level hierarchy layer still consists of the clustered
communication endpoints (blue boxes in Fig. 6b) as is the

(a) Overall communication trace.

(b) Close-up with visible grid lines.

Fig. 6. Timeline with grid-based edge bundling for the WRF trace.

Fig. 7. Timeline with grid-based edge bundling and additive color mixing
for the Tachyon run. Yellow bundles highlight hot paths.

case for hierarchical edge bundling. The grid then forms the
next level (magenta). We route each edge through the first
level to the grid. Within the grid we route the edge along the
shortest path that connects to the lower-level endpoint of the
communication target.

To improve the edge visualization within our grid we extend
our basic approach with the use of diagonals through the grid.
Fig. 7 combines this extension and applies an additive color
mixing instead of the previously used alpha blending. This
form of composition highlights hot communication paths in
bright yellow.

In comparison to our initial hierarchical approach, grid-
based edge bundling provides a more intuitive visualization.
Edges do not bend as far horizontally, the line arrangement is
more tidy, and especially for the Tachyon run the visualization
highlights the overall communication pattern very well. Due
to the limitation that our grid is fixed in position and cell
size, Fig. 6b shows that some lines are still bent more than
necessary (leftmost vertical messages). We expect that variable
position and cell sizes coupled with a quadtree refinement, as
introduced by Lambert et al. [9], would further improve the
diagram quality.



During our experiments it turned out that parameter tuning
for the diagrams proves challenging. Picking a good opacity,
bending degree, line width, color composition mode, hierarchy
depth and number of grid dimensions heavily depends on
the execution trace to be visualized. The choice of these pa-
rameters strongly influences the visual outcome and therefore
makes or breaks the visualization. A production implementa-
tion needs to automatically adjust these parameters.

Concluding our investigation of how edge bundling can
improve time-based communication visualization, we state:
First, providing high diagram quality is hard, and requires
manual parameter tuning so far. Second, edge bundling was
originally conceived for creating more accessible diagrams
of static data, like software module inter-dependencies [6].
It is intended for small-scale, non-interactive visualizations
and most related work uses the techniques in this fashion.
On the other hand, our goal was to study highly interactive
visualizations for millions of communication events. Such an
event count stresses current approaches for edge bundling.
With our sequential prototype implementation we can compute
and render the previous visualizations for WRF within about
one minute. The same images for the FD4 examples, which
are still multiple times smaller than other execution traces
that Vampir can visualize, takes well over twenty minutes.
While optimization for efficient and parallel processing are
not a target for our current prototype, the total number of
communication events in highly parallel applications will still
render edge bundling too computationally demanding. We are
not aware of existing approaches that bundle as many edges
as we do for our examples. Lambert et al. [9] processed up to
16,000 edges in roughly one second with a highly optimized
GPU-based solution and five or more seconds on a CPU.

B. Summary Visualizations

While our edge bundling approach works well for small
application runs, and while our grid-based bundling provides
intuitive visualizations, we want to provide an approach that
can work well with larger application runs, too. Thus, instead
of visualizing all individual messages, we alternatively display
one summarized value per pair of communication partners.
For this purpose, Vampir offers the Communication Matrix
View. Each cell of the matrix encodes a value, in color, with
the sending process on the left and the receiving process
on the top. Values such as average bandwidth, accumulated
number of bytes sent, or the total number of messages sent
then provide the values that we visualize. Fig. 8 shows such
a diagram for WRF and FD4. The depicted value is the total
number of messages sent. For Tachyon, since every process
communicates with process 0 only, there is a vertical line of
cells in the left-most column.

An alternative way to encode this information is to use chord
diagrams together with hierarchical edge bundling, where each
process is a node on a circle and lines between two nodes
encode a quantity for this pair of processes. For simplicity,
we do not use such an encoding and instead use our previous
green-to-red gradient that distinguishes origin processes from

(a) Every process for the WRF run sends ∼4,000 mes-
sages to two to four other processes.

(b) FD4 shows a more diverse communication structure.
Neighboring processes exchange most messages. Some
communication takes place between farther away pro-
cesses with respect to their process identifiers.

Fig. 8. The Vampir Communication Matrix displays communication statistics
for a program run. It encodes one value in color for each pair of processes.

destination processes. Fig. 9 shows the result of our approach
for the three example applications. For demonstration pur-
poses, we use additive color mixing for these diagrams. If pairs
of processes exchange messages in both directions, additive
color mixing leads to homogeneously brown lines as depicted
in Fig. 9a and Fig. 9b. The same effect can be observed in
the time-based case too, if there are overlapping messages
in opposing directions. As in the underlying communication
matrices, the diagrams provide a visual impression about the
complexity of the underlying communication pattern. Both the
increased number of communicating processes in FD4, as well
as the “towards-master” pattern of Tachyon are immediately
visible. The diagram for FD4 (Fig. 9b) exhibits brighter edges
on its right side. This highlights that half the processes have
more communication partners than the other half. This is also
visible in Fig. 8b with an increased number of cells in the
upper left of the diagram. For the Tachyon application, each
process sends messages to process 0, which the “hot” path in
Fig. 9c highlights.

In contrast to our timeline-based visualizations, the number
of messages to be drawn in our chord diagrams is limited by
the squared number of processes (at most one edge for each
pair of processes). Thus in practice, the number of lines for
these diagrams is smaller than in the timeline visualizations.



(a) WRF: Each pair of processes exchanges messages in
both directions. Therefore, additive color mixing leads to
a homogenous brown color.

(b) FD4 shows the same brown color as WRF. The right
side is brighter, which is a clear hint that there is more
communication in this range of processes.

(c) Tachyon: If there are few overlapping edges in
opposing directions, additive color mixing highlights hot
paths.

Fig. 9. Chord diagrams for the three example application runs with a green-
to-red (source-to-target) gradient and additive color mixing.

In our examples, WRF has 48 pairs of communicating process
and FD4 is down to ∼60,000 edges compared to the 2.2 million
edges in the timeline.

To improve our ability to highlight communication pat-
terns, we introduce an alternative process arrangement. In a
chord diagram, if two spatially close processes communicate,
the diagram arrangement provides little opportunity to bun-
dle this edge with other incoming edges. We propose, the
sender/receiver diagram (Fig. 10), which arranges processes
vertically and draws lines between sending processes on the
left and the corresponding receiving processes on the right.
This approach “stretches” the edges even for processes that
would otherwise be spatially close in a chord diagram, thus
providing better opportunity to bundle dominant communica-
tion paths. As for our extended timeline visualization, we use
a grid to create control polygons. Edge routes are determined
by an YX-routing preferring diagonals. Routing in this fashion
has two key advantages over using the shortest path. First, it
is deterministic, which the shortest path is not since there can
be multiple paths of the same minimum length. Second, the
routing highlights process pairs that are spatially distant as far
running diagonals. Otherwise, edges transition into horizontal
lines at an earlier point, e.g. in the first half of the diagram.
We use a grid size of eight by eight, so it divides the process
counts in our examples, i.e., 16, 256, and 1,024. Since we
represent each process with two nodes in this diagram type,
we do not need to use a color gradient to distinguish senders
from receivers. Instead, we employ the color to identify the
sending process.

For the WRF example, Fig. 10a highlights that edges do not
stretch very far diagonally before they continue horizontally.
This, and the fact that the color gradient extends not far
vertically, provides a good visual impression of the property
that processes do not communicate across large distances, but
rather in their neighborhood. The diagram for the FD4 case
(Fig. 10b) highlights that most processes send messages to
neighboring processes. Additionally, a few processes commu-
nicate across larger distances. Fig. 10b represents the Tachyon
communication pattern very clearly. As a fourth example,
we add a trace of the LULESH [23] pseudo-application,
which we ran on eight processes. This application run lets
all processes communicate with all other processes. Again,
the sender/receiver diagram in Fig. 10d highlights this pattern
very well.

The challenge of parameter choice, as for our timeline
visualizations, still applies. While the total number of mes-
sages to visualize is lower than for the timeline visualizations.
Increased application scale upwards of 1,000 processes is chal-
lenging. For example, our sequential prototype requires about
30 seconds to generate the diagram inFig. 10b. At the same
time, communication matrix views also suffer from a time
complexity that increases with scale. Given our experiments,
we perceive the sender/receiver diagram to be a simple, easily
accessible, and powerful visualization for an application’s
underlying communication pattern. We see an improvement
over chord diagrams.



(a) WRF: Processes only exchange messages with their
neighbors.

(b) FD4: Neighborhood communication is predominant.
Some global communication takes place in addition.

(c) Tachyon: All-to-one. (d) LULESH: All-to-all.

Fig. 10. The sender/receiver diagram for four example application runs. By coloring processes distinctly, users get a good sense of where messages are sent
to.

To further improve our sender/receiver diagrams, we suggest
to incorporate topology information. For an application devel-
oper, arranging processes based on the domain decomposition
in use is helpful. Often, tools can extract this information from
MPI communicators. Additionally, to understand hardware
effects, the use of the hardware topology is an alternative
source for improved diagram arrangements. Thus, we could
route edges along the topology information, to better reflect
the underlying system.

VI. CONCLUSION

We present an investigation of using edge bundling for
both time-based and summary-based visualizations of parallel
communication. Our experience shows that purely hierarchical
edge bundling often produces unintuitive diagrams, since too
many edges pass through the root of the hierarchy. To alleviate
this problem, we introduce a grid-based approach that yields
good visual results.

For timeline visualizations with edge bundling we see two
major challenges: First, the total number of messages limits
applicability to large application runs. Second, a broader suite
of test cases and improved diagram quality must ensure that
the charts provide reliable and intuitive visualizations for the
majority of applications. Another area of focus lies in opti-
mizing the performance of our techniques. Parallel algorithms
could drastically reduce the time needed to generate charts.
We propose the sender/receiver diagram to reduce runtime
complexity, while improving the ability to highlight commu-
nication patterns over existing summary-based communication
visualizations.

In short, we perceive that: First, edge bundling is hard to get
right. The resulting diagrams need to be intuitive and helpful.
Second, using edge bundling for interactive visualizations of
large edge counts proves challenging. Edge bundling is usually
used with at most 16,000 edges. In this work we present
diagrams with up to 160,000.

VII. FUTURE WORK

In the short term, we aim to first improve the visual result
quality of the sender/receiver diagram. Another opportunity for
improvement is to encode values into edges, e.g., by varying
their thickness. Additionally, we want to explore alternative
ways to obtain control polygons, e.g., from the hardware
topology.

Edge bundling for time-based diagrams is still a promising
visualization type. Steps to improve our current approach
include performance enhancements with techniques such as
message filtering or by combining batches of related messages.
Secondly, the grid technique needs to take the underlying
communication structure into account instead of having a fixed
parameter set.

We will also explore edge bundling techniques that do not
require control polygons, like for example force-directed edge
bundling [8].

REFERENCES

[1] “Message Passing Interface (MPI) forum,” http://mpi-forum.org, Apr.
2016.

[2] L. Lamport, “Time Clocks, and the Ordering of Events in a Distributed
System,” Commununications of the ACM, vol. 21, pp. 558–565, 1978.

[3] “Intel Trace Analyzer and Collector,” https://software.intel.com/
intel-trace-analyzer, Jul. 2016.

http://mpi-forum.org
https://software.intel.com/intel-trace-analyzer
https://software.intel.com/intel-trace-analyzer


[4] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to
visualize and analyze parallel code,” in Proceedings of WoTUG-18:
Transputer and occam Developments, vol. 44, 1995, pp. 17–31.

[5] H. Brunst and M. Weber, “Custom hot spot analysis of HPC software
with the Vampir performance tool suite,” in Tools for High Performance
Computing 2012. Springer, 2013, pp. 95–114.

[6] D. Holten, “Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, 2006.

[7] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony et al., “Score-P:
A joint performance measurement run-time infrastructure for Periscope,
Scalasca, TAU, and Vampir,” in Tools for High Performance Computing
2011. Springer, 2012, pp. 79–91.

[8] D. Holten and J. J. Van Wijk, “Force-directed edge bundling for graph
visualization,” in Computer Graphics Forum, vol. 28, no. 3. Wiley
Online Library, 2009, pp. 983–990.

[9] A. Lambert, R. Bourqui, and D. Auber, “Winding roads: Routing edges
into bundles,” in Computer Graphics Forum, vol. 29, no. 3. Wiley
Online Library, 2010, pp. 853–862.

[10] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer, “State of the art of performance visual-
ization,” EuroVis 2014, 2014.

[11] F. Schmitt, R. Dietrich, R. Kuß, J. Doleschal, and A. Knüpfer, “Visu-
alization of performance data for MPI applications using circular hier-
archies,” in Proceedings of the First Workshop on Visual Performance
Analysis. IEEE Press, 2014, pp. 1–8.

[12] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of parallel
applications computation phases,” in Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on. IEEE, 2009,
pp. 1–11.

[13] K. Isaacs, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, and P.-
T. Bremer, “Ordering traces logically to identify lateness in message
passing programs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 3, pp. 829–840, 2015.

[14] C. Schaubschlaeger, D. Kranzlmüller, and J. Volkert, “Event-based
program analysis with DeWiz,” arXiv preprint cs/0310007, 2003.

[15] “Oracle solaris studio 12.3: Performance analyzer MPI tutorial –
viewing message details,” https://docs.oracle.com/cd/E24457 01/html/
E22002/ggxsx.html, Apr. 2016.

[16] J. Michalakes, S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff,
and W. Skamarock, “Development of a next generation regional weather
research and forecast model,” in Developments in Teracomputing: Pro-
ceedings of the Ninth ECMWF Workshop on the use of high performance
computing in meteorology, vol. 1. World Scientific, 2001, pp. 269–276.

[17] M. Lieber, V. Grützun, R. Wolke, M. S. Müller, and W. E. Nagel, “Highly
scalable dynamic load balancing in the atmospheric modeling system
COSMO-SPECS+FD4,” in International Workshop on Applied Parallel
Computing. Springer, 2010, pp. 131–141.

[18] B. Rockel, A. Will, and A. Hense, “The regional climate model
COSMO-CLM (CCLM),” Meteorologische Zeitschrift, vol. 17, no. 4,
pp. 347–348, 2008.

[19] V. Grützun, O. Knoth, and M. Simmel, “Simulation of the influence of
aerosol particle characteristics on clouds and precipitation with LM-
SPECS: Model description and first results,” Atmospheric Research,
vol. 90, no. 2, pp. 233–242, 2008.

[20] “122.tachyon SPEC MPI2007 benchmark description,” http://www.spec.
org/mpi2007/docs/122.tachyon.html, Jun. 2016.

[21] M. S. Müller, M. van Waveren, R. Lieberman, B. Whitney, H. Saito,
K. Kumaran, J. Baron, W. C. Brantley, C. Parrott, T. Elken et al.,
“SPEC MPI2007–an application benchmark suite for parallel systems
using MPI,” Concurrency and Computation: Practice and Experience,
vol. 22, no. 2, pp. 191–205, 2010.

[22] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” IEEE
Transactions on information theory, vol. 21, no. 1, pp. 32–40, 1975.

[23] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang et al., “Exploring traditional and
emerging parallel programming models using a proxy application,” in
Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th Interna-
tional Symposium on. IEEE, 2013, pp. 919–932.

https://docs.oracle.com/cd/E24457_01/html/E22002/ggxsx.html
https://docs.oracle.com/cd/E24457_01/html/E22002/ggxsx.html
http://www.spec.org/mpi2007/docs/122.tachyon.html
http://www.spec.org/mpi2007/docs/122.tachyon.html

	Introduction
	Related Work
	Edge Bundling
	Performance Visualization Tools & Techniques

	Motivation
	Test Cases
	Edge Bundling
	Time-based Visualization
	Summary Visualizations

	Conclusion
	Future Work
	References

