
Detection and Visualization of Performance Variations
to Guide Identification of Application Bottlenecks

Matthias Weber, Ronald Geisler, Tobias Hilbrich, Matthias Lieber,
Ronny Brendel, Ronny Tschüter, Holger Brunst, and Wolfgang E. Nagel

Center for Information Services and High Performance Computing
Technische Universität Dresden, Germany

{matthias.weber, tobias.hilbrich, matthias.lieber, ronny.tschueter, holger.brunst, wolfgang.nagel}@tu-dresden.de

Abstract—The identification of performance bottlenecks in
parallel applications is a challenging task. Without some form
of performance measurement tool, this task lacks any guidance
and purely relies on trial-and-error. At the same time, data sets
from parallel performance measurements are often large and
overwhelming. We provide an effective solution to automati-
cally identify and highlight several types of performance critical
sections in an application run. Our approach first identifies
time dominant functions of an application that are subsequently
used to analyze runtime imbalances throughout the application
run. We then present the resulting runtime variations in an
intuitive visualization that guides the analyst to performance
hot spots. We demonstrate the effectiveness of our approach
in a case study with three applications, detecting performance
problems and identifying their root-causes in all cases.

I . I N T R O D U C T I O N

Today’s High Performance Computing (HPC) systems
feature complex architectures that require software adaption
and tuning to run codes efficiently. In this regard performance
analysis of parallel applications presents a challenging task.
The analysis process involves measurements to gather data
for performance evaluation. Existing measurement suites
offer different levels of detail. Measurements with low
levels of detail record coarse-grain measurement samples that
are averaged across application processes. Highly detailed
measurements provide many measurement samples and retain
all individual measurement points. The latter is well-suited
to detect performance problems that vary across processes or
over time, as well as to highlight root causes for several types
of performance problems. While performance measurement
tools exist to capture such detailed data at scale [5], [9],
the analysis of such detailed measurement data remains
challenging.

Existing analysis approaches either provide automatic
search methods for specific problems [6], [21] or leave
the analysis task completely to the analyst and provide a
visualization of the data [3], [10], [13]. While automatic
search methods are limited to certain types of problems,
pure visualization approaches cover the widest range of
possible detectable performance problems. This makes visual
analysis methods powerful and compelling. At the same
time they suffer from a more user driven identification of

the performance problems. We provide a new approach
for visualization-based performance analysis that identifies
performance hotspots of an application execution.

Ideally, applications making use of structured parallelism
should exhibit a regular runtime behavior throughout the
complete run and across all processes. Meaning, that for
instance the duration of iterations should be similar between
processes as well as from the beginning to the end of the
application. If some parts of an application run slower than
the other parts, this might indicate a performance problem.
We refer to such a situation with the terms runtime imbalance
or performance variation. With our approach we detect such
imbalances and highlight areas in an application run that
exhibit notably higher runtime than others. Our performance
measurement data sets are so-called program traces, which
are time-sorted records of timestamped application behavior.
Examples for performance relevant behavior include entering
or leaving a function or sending a message from one process
to another. In a parallel application, each processing element
can create one such trace. To detect slow performing parts
we first automatically identify time-dominant functions of
an application. These functions are most suitable to detect
runtime imbalances. To guide the analyst, we then analyze
and visualize execution time variations of these function
invocations throughout the application run. Applying our
approach on top of established trace visualization methods
allows analysts to benefit from the full potential of the
underlying analysis system, as to detect the root cause of a
performance problem. In summary our approach highlights
performance critical parts during an application execution,
and thus, guides the analyst directly to performance problems.

Our contribution includes:
• A method to automatically identify time-dominant func-

tions of an application run;
• A scheme to calculate runtime imbalances using time-

dominant functions to reveal performance critical areas;
• A visualization of runtime imbalances in a trace visu-

alizer, thus, ultimately guiding analysts to performance
problems; and

• An application study with three examples to showcase
the effectiveness of our approach.

The remainder of this paper is organized as follows. In
Section II we describe related work. Sections III-VI highlight
our overall approach and methodology. In these sections we
detail how we identify and visualize runtime imbalances.
In the case study in Section VII we verify the validity of
our approach for the detection of performance problems.
We analyze several trace data sets and detect different
performance problems and identify their root cause.

I I . R E L AT E D W O R K

A wide range of parallel performance analysis approaches
exists. We provide an overview of their basic techniques and
relate them to our approach.

Parallel profilers like TAU [2] and HPC Toolkit [1] show
aggregated statistics of an application run. Such profiles are
well suited for an overview of the performance behavior
of an application. But due to aggregation, the detection of
runtime imbalances and small slow sections can be hard or
even impossible.

Trace viewers like Vampir [3], Paraver [17], and the Intel
Trace Analyzer [10] visualize performance traces to guide the
user to potential performance problems. Usually, summary
information provides the guidance that allows the analyst
to find interesting spots in timeline charts that visualize
the overall trace data. Since these tools present full data
sets, they can detect runtime imbalances and bottlenecks.
However, due to the large amount of data, analysts may easily
miss performance problems during their analysis. To provide
scalable visualization, Mohror et al. [13] propose a technique
to compare event streams of processes. The approach takes
structurally equal processes and compares their temporal
behavior. If the temporal behavior of these processes is
sufficiently similar, only one representative is stored to
simplify the visualization. However, by basing the analysis on
only a few representative processes, performance problems
may easily be hidden. Additionally, root causes, such as high
inter-process communication latency on a specific process,
may not be included in the selected representatives.

Weber et al. [20] propose metrics to compare traces using
alignment techniques. These techniques highlight perfor-
mance differences between different application runs. At the
same time, the approach fails to highlight differences between
processes inside a single run. An extension of the Paraver
tools suite [7] targets a tool that characterizes computation
phases. It clusters these periods with a common clustering
algorithm. The result is a classification of phases that differ in
instructions-per-second rates. While this approach provides
an overview of the different performance characteristics of
computation phases, it does not highlight individual variations
within processes.

A range of performance tools also employ automatic
analysis techniques for performance problems. Scalasca [21]
automatically searches trace data for a range of inefficiency
patterns. Located patterns are ranked by their severity and

foo
bar

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;
}

t
0 1 2 3 4 5 6

Inclusive time of foo: t = 6.

Exclusive time of foo: t = 4.

Figure 1. Inclusive vs. exclusive time of a function invocation.

impact on the application performance. This approach saves
the analyst from manually analyzing the trace data, but it is
also restricted to a limited set of performance problems. The
tool Periscope [6] follows an online monitoring approach.
Application performance is analyzed while the application
executes. The tool iteratively applies tests for performance
critical behavior. Since the tool does not check for all per-
formance problems at the same time, it may miss detectable
problems in the application. Both approaches, Scalasca and
Periscope, do not visualize runtime imbalances over time in
order to detect performance bottlenecks.

To the best of our knowledge no tool provides detection
and visualization of fine-grained performance variations
throughout the application execution.

I I I . M E T H O D O L O G Y OV E RV I E W

We apply our approach to traces of a parallel application.
Profiles do not suffice since we require information on
runtime variations of application functions. Additionally, our
visualization targets timeline visualizations that also apply to
traces only. For our prototype implementation we use traces
from Score-P [11] and VampirTrace [15]. We require no
modifications for their measurement and our technique also
applies to traces from other parallel performance analysis
suites, such as Extrae [4].

We apply our technique after an application run suc-
cessfully created a trace. In-situ analysis while the target
application is still running is feasible as well, but the
performance analysis suite that we use for our prototype
does not support such a workflow. Using the trace as input
we perform three steps for our technique:

1) Identification of time-dominant functions that are used
to partition the complete run into small segments1,

2) Computation of performance variations between these
function invocations (segments), and

3) An intuitive visualization to present the overall result.

1As we use invocations of the time-dominant function as segments, the
inclusive time of the dominant function invocation equals the respective
segment duration.

t
70 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 186

bb

b

a
Process 0:

a
main

b bc
c

a
c

i

a a
main

b bc
c

a
c

i

a a
main

b bc
c

a
c

i

Process 1:

Process 2:

Figure 2. For our performance variation analysis we select one time-dominant function. The selected function needs to have a possibly high inclusive
time and an invocation count higher than the number of processes. In this example function a fulfills these criteria.

I V. I D E N T I F I C AT I O N O F T I M E - D O M I N A N T
F U N C T I O N S

We need to identify reoccurring parts of an application
in order to detect performance variations during the ap-
plication run. Reoccurring parts allow us to separate an
overall execution into multiple segments. Afterwards, we
can compare runtimes between the segments. Thus, the first
step of our analysis is a selection of suitable segments to
highlight performance variations. Since parallel applications
usually execute functions repeatedly, as they are being called
in loops, we select such a function for our segments. Note
that the measurement systems that we use also support
instrumentation of loop bodies. If such an instrumentation
is in use, we can use loop bodies as well. For simplicity
we use the term function in the following. To decide which
particular function we select as segments, we consider their
inclusive times.

When measuring a function’s invocation, there are two
options to report the function’s duration: inclusive and
exclusive time. Figure 1 depicts the difference between
inclusive and exclusive time. Inclusive time represents the
complete duration of a function’s invocation, from initially
entering to finally leaving the function call. This time also
includes the time spent in sub-functions. The inclusive time
for function foo in Figure 1 starts with entering foo (t = 0)
and stops when foo is left (t = 6). The inclusive time
includes the sub-call to function bar and is 6 in the example.
The exclusive time, on the contrary, represents only the
amount of time spent directly inside the respective function’s
invocation, excluding sub-functions. The exclusive time of
function foo in Figure 1 starts with entering foo at t = 0,
excludes the sub-call of function bar (t = 2 to t = 4), and

ends with leaving of foo at t = 6, i.e., it is 4 in the example.
We consider inclusive time to detect dominant functions,

since it includes the overall performance impact of a function.
Figure 2 illustrates an example that uses three processes and
the functions main, i, a, b, as well as c. A time-dominant
function should have a considerable impact on the total
application runtime. For that we consider the aggregated
inclusive time of each function. Selecting the function with
the highest aggregated inclusive time, however, is not a good
choice for a dominant function. In the example, this would
be the function main (54 time steps). Such top call-level
functions may be suitable to compare the runtime between
processes, but they are not suited to analyze variations over
the runtime. Additionally, they provide no segmentation of
the overall runtime. Thus, just maximum aggregated inclusive
time is not a good selection criteria alone.

As a consequence, for a time-dominant function we select
a function with high aggregated inclusive time, but which
also features a higher number of invocations. In the example
of Figure 2, the function with the highest inclusive time share
is main. The function main is called three times on the
three processes in total. Thus, top call-level functions like
main have exactly as many invocations as there are paral-
lel processing elements. Thus, we define a time-dominant
function f as:

• For p processing elements, f is invoked at least 2p
times and there exists no other function that satisfies
this condition and has higher aggregated inclusive time.

In the example, the function with the second highest
inclusive time share is a (36 time steps). Function a is called
nine times on three processes, i.e., it satisfies the invocation
count restriction. Hence, a is the time-dominant function for
the example.

t
70 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 186

2

a
Process 0:

a
main

a a
main

a
main

Process 1:

Process 2:

a

a

calc MPI

a

a

Process 0: 6

6

6

Process 1:

Process 2:

Process 0:

Process 1:

Process 2:

3

3

3

5

5

5

MPI

MPI

calc

calc

MPI

MPI

MPIcalc

calc

calc MPI

MPI

MPIcalc

calc

calc

5

3

1

2

2

4

1

3

1

Figure 3. Calculation of performance variations. First, shown in the middle, we calculate segment durations (inclusive time of function a in this example).
Then, shown at the bottom, we subtract synchronization time from the segment durations to compute our synchronization-oblivious segment time (SOS-time).

While our selection criterion is heuristic, the subsequent
use cases demonstrate that it provides functions that represent
iterative application behavior well in practice. Comparing the
runtime of such functions, and thus, analyzing the durations
of iterations provides a solid foundation to detect a wide
range of performance hotspots.

V. A N A LY S I S O F R U N T I M E I M B A L A N C E S

With a selected time-dominant function we can compare
the runtimes of its individual invocations. This comparison
highlights shifts in runtime behavior over time and identifies
runtime imbalances. For instance, if an application runs
gradually slower, the inclusive time of a good dominant
function will usually increase as well over time. Also, outlier-
iterations with exceptionally long runtime will impact the
inclusive time of a dominant function.

The comparison of inclusive times of dominant functions
alone has a shortcoming: In many applications, synchroniza-
tion calls are also included in iterative function behavior.
Figure 3 illustrates this behavior with the communication
function named MPI. As we previously highlighted, our
heuristic selects a as the dominant function for this example.
If we directly compare the inclusive time of a’s invocations,
we receive the results shown in the middle of Figure 3. The

iterations in the middle (duration of 3) are twice as fast as the
first iteration (duration of 6). This analysis already detects
performance variation across iterations. However, if some
iterations show a differing behavior from others, there are
often only a few processing elements that cause this behavior.
With the direct comparison of dominant function durations,
we cannot identify the processes that cause the differences.
The reason is often, that synchronization between processes
is included in the iteration code. For instance, consider
the example in Figure 3. In each iteration all processes
first run a calculation (function calc) and then call an
MPI [14] synchronization operation, e.g., MPI_Barrier
(indicated as function MPI). Process 2 in Figure 3 completes
its calculations faster than Process 0. As a consequence,
the MPI synchronization call in Process 2 runs longer, as
this process is waiting for Process 0 to finish. The differ-
ence of the calculation part between the processes remains
hidden, since the synchronization wait time is included in
the inclusive time for the dominant function. Therefore,
we adjust our calculation method to cover performance
variations between segments. Instead of directly using each
segment’s duration, we subtract any synchronization time
from its inclusive time. The synchronization time can be
easily detected if the application uses common parallelization

libraries like MPI [14], OpenMP [16], or similar. In such
case, we check each segment for synchronization operations,
e.g., MPI_Wait, MPI_Reduce, or omp barrier, and
subtract their runtime from the inclusive time of our dom-
inant functions. We refer to this adapted segment time as
synchronization-oblivious segment time (SOS-time) and use
it as measure for runtime imbalances. Figure 3 (bottom)
depicts this process for the example. Our SOS-times correctly
reflect the performance differences between the processes.
For instance, for the first iteration in Figure 3 the SOS-time
of Process 2 shows 1 compared to a SOS-time of 5 for
Process 0, i.e., it highlights the computational load imbalance
in the first iteration.

V I . V I S U A L I Z AT I O N O F R U N T I M E I M B A L A N C E S

As the last step of our approach, we visualize our SOS-
times to the analyst. Therefore, we implemented our analysis
methods in the Vampir performance analysis framework [3].
To achieve an intuitive visualization, we overlay commonly
used timeline views of Vampir. We use the SOS-times as
values for a new metric counter. For our visualization we en-
code the metric with a color-coded scale. Blue—cold—colors
indicate short durations, whereas red—hot—colors indicate
long durations. Figures 4(b), 5(b), 5(c), and 6(b) in the
subsequent section present examples of our visualization.

V I I . C A S E S T U D Y

In this section we demonstrate the applicability of our
approach with three use cases. To initially measure applica-
tion performance data we use traces from the Score-P [11]
and VampirTrace [15] measurement frameworks. As we il-
lustrated in the methodology overview, our approach requires
no modifications at measurement time. We implement our
analysis as part of the Vampir [3] analysis and visualization
toolkit. In the following, we analyze trace files with known
performance problems to demonstrate the capabilities of our
technique.

A. Load Imbalance - COSMO-SPECS

The first case study is an analysis of the execution of
a weather forecast code [8]. The code couples two models,
COSMO and SPECS, for a more accurate simulation of cloud
and precipitation processes. COSMO is the regional weather
forecast model originally developed at the German Weather
Service (DWD). SPECS is a detailed cloud microphysics
model developed at the Leibniz Institute for Tropospheric
Research (IfT). SPECS computes detailed interactions be-
tween aerosols, clouds, and precipitation.

Figure 4(a) shows the Vampir timeline visualization of
the overall application run. The execution under study uses
100 MPI processes that Vampir each represents with a
horizontal bar. The colors then identify the currently active
functions across the overall execution time. Red identifies
MPI activities, purple SPECS activities, green COSMO

activities, and yellow highlights the coupling between the
two models. Compared to COSMO, the SPECS calculations
are significantly more compute intensive. Therefore, purple
areas—SPECS code—dominate the application run. The
execution of COSMO code—green areas—is barely visible
in Figure 4(a). This behavior is caused by the computational
demand of the underlying physics. However, Figure 4(a) also
shows another trend. Throughout the execution, the fraction
of MPI—red areas—increases, up to a point where MPI
activities are dominating towards the end of the run. Our
heuristic selects a dominant function whose occurrences
represent individual iterations. If we compare the plain
inclusive time of this function (segment durations), we
observe gradually increased durations towards the end of
the application run.

To find the cause of the degrading performance, we use
our synchronization-oblivious segment time (SOS-time) from
Section III. Figure 4(b) presents this metric and highlights
that only a few processes (Process 44, 45, 54, 55, 64, 65)
exhibit increases in this metric. Particularly Process 54 needs
more time than any other process for its calculations.

The reason for this behavior is a static decomposition of
the computational grid. COSMO employs a two dimensional
(horizontal) decomposition into M ×N domains and applies
no dynamic load balancing. SPECS uses the same data struc-
tures and decomposition as the COSMO model, but instead
computes cloud microphysics. During the execution, SPECS
introduces large load imbalances, since its computational
cost heavily depends on the presence and size distribution of
various cloud particle types in the grid cell [12]. Thus, the
layout of clouds in the application domain determines the
local work. In other words, while Process 54 still performs
cloud microphysics calculations, the other processes idle
while waiting for it to finish. A solution to this performance
problem is to introduce dynamic load balancing for the
SPECS model.

Our analysis and visualization correctly represents the
performance situation of the application. By following the
high—red—values the analyst is pointed directly to the cause
of the performance bottleneck.

B. Process Interruption - COSMO-SPECS+FD4

In this case study we analyze an extended version of
the previous weather forecast code [8]. In this version the
developer has added a dynamic load balancing mechanism,
called FD4 [12], to the SPECS model. As described in
the first case study, the high computational demand of
the SPECS code, combined with its high dependence on
local workload—presence of cloud particles in the domain—
demand a dynamic load balancing for efficient computation.

The application run under study uses 200 MPI processes.
Our initial analysis—not shown—detected that only a few
iterations behaved differently and exhibited larger durations
than other iterations. The goal of this study is to detect the

(a) Timeline visualization of COSMO-SPECS running on 100 processes, showing increasing MPI durations (red areas) over time.

(b) Runtime variation analysis result. Several processes (middle) exhibit higher runtimes (SOS-time) in their dominant function.

Figure 4. Analysis of the COSMO-SPECS weather forecast code. (a) shows the timeline visualization. (b) shows our analysis results.

(a) Timeline visualization of COSMO-SPECS+FD4 running on 200 processes.

(b) Coarser runtime variation analysis result (SOS-time). Especially Process 20 exhibits a high
duration in its dominant function.

(c) Finer runtime variation analysis result (SOS-time). Using smaller segments sizes allows direct
identification of the one function invocation that causes the performance degradation.

Figure 5. Analysis of a COSMO-SPECS+FD4 application run. Displayed is just one iteration. (a) shows the timeline visualization. (b) (coarser segments)
and (c) (finer segments) show our variation analysis results using SOS-time.

(a) Timeline visualization of WRF running on 64 processes.

(b) Runtime variation analysis. Especially Process 39 exhibits high SOS-times in its segments.

(c) Values of the counter FR_FPU_EXCEPTIONS_SSE_MICROTRAPS. Process 39 shows a high
number of floating-point exceptions.

Figure 6. Analysis of a WRF application run. (a) shows the timeline visualization. (b) shows our variation analysis results and (c) shows values the
floating-point exceptions counter.

reason for these slow iterations. Therefore, the analyst used
a second measurement run to only record slow iterations.
For normal iterations the analyst discarded the tracing data.
We show the timeline visualization of one slow iteration in
Figure 5(a). Again, different colors represent different activity
types. Red relates to MPI code, blue indicates areas where
performance data was dropped, while orange and white areas
relate to SPECS activities. The black lines indicate MPI
messages sent from one process to another. The runtimes
of COSMO and FD4 are so short compared to SPECS that
these areas are not directly visible in Figure 5(a). Looking at
the behavior in Figure 5(a), we see that one SPECS timestep
near the end of this iteration takes significantly longer
than the others. Especially, increased MPI wait time—more
red areas—and higher message transfer times—longer black
lines—indicate this behavior. However, the reason causing
the slower timestep in this iteration is not immediately
visible.

By using our runtime variation analysis, we can guide the
analyst to the cause of this performance problem. We show
the result of our analysis in Figure 5(b). The red line in the
figure highlights a high SOS-time for Process 20. Thus, the
performance problem is caused by longer computation time
of Process 20. To find the exact place of the performance
problem, we can refine granularity by adapting the dominant
function. By choosing a function with a smaller inclusive
time we achieve a more fine-grained segmentation. This
option is beneficial to track the origin of a performance
problem. We show the result of the finer segmentation in
Figure 5(c). This figure clearly shows a single function
call—red line—that runs significantly longer than all other
invocations—blue lines—of this function. A closer inspection
of Process 20 shows, that this single function call exhibits a
low number of total assigned CPU cycles (measured with the
PAPI counter PAPI TOT CYC [19]). Subsequently, Process
20 has been interrupted exactly during the execution of
this function’s invocation. The cause for the interruption
is assumed to be an influence from the operating system.

Using our runtime variation analysis, the analyst is directly
pointed to the performance bottleneck. Without an extended
search, the subsequent analysis can be focused directly on
the hotspot and quickly reveal the cause of the performance
problem.

C. Floating-Point Exceptions - WRF

In this case study we analyze an application run of the
Weather Research and Forecasting model (WRF), with a stan-
dard benchmark case (12km CONUS) [18]. The application
under study uses 64 MPI processes. Figure 6(a) presents
Vampir’s basic timeline visualization. Red areas relate to
MPI activities. Blue areas relate to computations of the
dynamical core of WRF. These parts of the application
compute for instance density, temperature, pressure, and
winds in the atmosphere. Brown areas relate to the physical

parameterization calculations of WRF. For instance clouds,
rain, and radiation are computed in these parts.

In the early parts of the run (left of Figure 6(a)) the
application executes model initialization and I/O activities
that take about 11 seconds. Afterwards, the actual iterations
begin. Basic Vampir statistics for the iterations show a 25%
fraction of MPI activities, which highlights a noticeable
parallelization overhead. The timeline view in Figure 6(a)
does not present an immediate cause for this overhead.

In Figure 6(b) we visualize the SOS-time of the dominant
function of the application run. The segments located in
the lower right part in the figure highlight increased du-
rations. Particularly Process 39 exhibits higher durations
than the other processes. A closer inspection supports
this immediate result: Process 39 computes slower and
causes the other processes to wait. Based on hints that
floating-point intensive functions compute slower, the analyst
found that a high number of floating-point exceptions slows
down Process 39. For validation we show the values of
the counter FR_FPU_EXCEPTIONS_SSE_MICROTRAPS
color-coded in Figure 6(c). As shown in the figure, Pro-
cess 39 exhibits an exceptional high number—red areas—
of floating-point exceptions. Moreover, comparing Fig-
ure 6(b) and Figure 6(c) we see, that the results of the
counter FR_FPU_EXCEPTIONS_SSE_MICROTRAPS per-
fectly match our runtime variation analysis.

This shows, that our approach correctly depicts the appli-
cation performance behavior. By following our visualization,
the analyst is guided closely to the performance issue. If
necessary, focused subsequent analyses then reveal the root
cause of the performance problem.

V I I I . C O N C L U S I O N S

We present an effective and lightweight approach to
facilitate visual analysis of performance data. Our approach
guides the analyst directly to performance bottlenecks. We
identify functions that are reoccurring and have a substantial
impact on the overall runtime of an application first. Then, we
calculate an implicit runtime for these functions that excludes
communication and synchronization costs. Our visualization
of this synchronization-oblivious implicit time highlights
performance variations. For parallel applications that must
strive to achieve good load balance, this metric efficiently
highlights a wide range of load balancing problems. Since
we rely on timestamped traces of performance data, we can
also efficiently highlight behavior that changes over time.
We compute and visualize our metric as part of the Vampir
performance framework.

Our analysis method—performance variations during an
application’s execution—proves to be a viable approach for
the detection of performance hotspots. In three analysis case
studies we demonstrate the effectiveness of our approach
by locating performance bottlenecks in the application runs.
Since our methods directly identify the location of the

performance problem, we enable focused subsequent analysis
to find the underlying root-cause of the problem.

Effectively, our methods support the performance analyst
in helping him to focus on performance problems faster.
We save the analyst from long analysis sessions, manually
searching for performance problems.

R E F E R E N C E S

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent. HPCToolkit: Tools
for Performance Analysis of Optimized Parallel Programs.
Concurrency and Computation: Practice and Experience,
22(6):685–701, 2010.

[2] R. Bell, A. Malony, and S. Shende. ParaProf: A Portable,
Extensible, and Scalable Tool for Parallel Performance Profile
Analysis. In Euro-Par 2003 Parallel Processing, volume 2790
of Lecture Notes in Computer Science, pages 17–26. Springer
Berlin Heidelberg, 2003.

[3] H. Brunst and M. Weber. Custom Hot Spot Analysis of
HPC Software with the Vampir Performance Tool Suite. In
Proceedings of the 6th International Parallel Tools Workshop,
pages 95–114. Springer Berlin Heidelberg, September 2012.

[4] Extrae User Guide. https://www.bsc.es/computer-sciences/
performance-tools/trace-generation/extrae/extrae-user-guide,
Jan. 2016.

[5] M. Geimer, P. Saviankou, A. Strube, Z. Szebenyi, F. Wolf,
and B. J. N. Wylie. Further improving the scalability of the
Scalasca toolset. In Proc. of PARA 2010: State of the Art
in Scientific and Parallel Computing, Part II: Minisymposium
Scalable tools for High Performance Computing, Reykjavik,
Iceland, June 6–9 2010, volume 7134 of Lecture Notes in
Computer Science, pages 463–474. Springer, 2012.

[6] M. Gerndt and M. Ott. Automatic Performance Analysis
with Periscope. Concurrency and Computation: Practice and
Experience, 22(6):736–748, April 2010.

[7] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic Detection
of Parallel Applications Computation Phases. In Parallel
& Distributed Processing. IPDPS 2009. IEEE International
Symposium on, pages 1–11, 2009.

[8] V. Grützun, O. Knoth, and M. Simmel. Simulation of the
influence of aerosol particle characteristics on clouds and
precipitation with LM-SPECS: Model description and first
results. Atmospheric Research, 90(24):233–242, 2008.

[9] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones,
A. Knüpfer, K. Iskra, R. Ross, W. E. Nagel, and S. Poole.
Enabling Event Tracing at Leadership-class Scale Through
I/O Forwarding Middleware. In Proceedings of the 21st
International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’12, pages 49–60, New York,
NY, USA, 2012. ACM.

[10] Intel Trace Analyzer and Collector. http://software.intel.com/
en-us/articles/intel-trace-analyzer/, Nov. 2015.

[11] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Mal-
ony, W. E. Nagel, Y. Oleynik, P. Philippen, P. Saviankou,
D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg,
and F. Wolf. Score-P: A Joint Performance Measurement Run-
Time Infrastructure for Periscope, Scalasca, TAU, and Vampir.
In Tools for High Performance Computing 2011, pages 79–91.
Springer Berlin Heidelberg, 2012.

[12] M. Lieber, V. Grützun, R. Wolke, M. S. Müller, and W. E.
Nagel. Highly Scalable Dynamic Load Balancing in the
Atmospheric Modeling System COSMO-SPECS+FD4. In
Proc. PARA 2010, volume 7133 of LNCS, pages 131–141,
2012.

[13] K. Mohror, K. L. Karavanic, and A. Snavely. Scalable Event
Trace Visualization. In Proceedings of the 2009 international
conference on Parallel processing, Euro-Par’09, pages 228–
237, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] MPI: A Message-Passing Interface Standard, Version 3.0.
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf,
2012.

[15] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst,
H. Mix, and W. E. Nagel. Developing Scalable Applications
with Vampir, VampirServer and VampirTrace. In Parallel Com-
puting: Architectures, Algorithms and Applications, ParCo
2007, Forschungszentrum Jülich and RWTH Aachen University,
Germany, 4-7 September 2007, pages 637–644, 2007.

[16] OpenMP. http://openmp.org/wp/openmp-specifications, Nov
2015.

[17] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A
Tool to Visualize and Analyze Parallel Code. In Proceedings
of WoTUG-18: Transputer and occam Developments, pages
17–31, March 1995.

[18] G. Shainer, T. Liu, J. Michalakes, J. Liberman, J. Layton,
O. Celebioglu, S. A. Schultz, J. Mora, and D. Cownie. Weather
Research and Forecast (WRF) Model Performance and Profil-
ing Analysis on Advanced Multi-core HPC Clusters. In 10th
LCI International Conference on High-Performance Clustered
Computing, 2009.

[19] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting
Performance Data with PAPI-C. In Tools for High Per-
formance Computing 2009, pages 157–173. Springer Berlin
Heidelberg, 2010.

[20] M. Weber, K. Mohror, M. Schulz, B. R. de Supinski, H. Brunst,
and W. E. Nagel. Alignment-Based Metrics for Trace Com-
parison. In Proceedings of the 19th International Conference
on Parallel Processing, Euro-Par’13, pages 29–40. Springer-
Verlag, Berlin, Heidelberg, 2013.

[21] F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, W. Frings,
K. Fürlinger, M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore,
M. Pfeifer, and Z. Szebenyi. Usage of the SCALASCA
Toolset for Scalable Performance Analysis of Large-Scale
Parallel Applications. In Proceedings of the 2nd Parallel Tools
Workshop, Stuttgart, Germany, pages 157–167. Springer, July
2008.

