
Trace File Comparison with a Hierarchical
Sequence Alignment Algorithm

Matthias Weber, Ronny Brendel, Holger Brunst

Center for Information Services and High Performance Computing

Technische Universität Dresden

Dresden, Germany

Email: {matthias.weber, ronny.brendel, holger.brunst}@tu-dresden.de

Abstract—Performance optimization, especially in the field of
HPC, is an integral part of today’s software development process.
One powerful way of optimizing applications is to analyze their
event traces. Yet, the comparison of traces of multiple application
runs is cumbersome. The impact of optimizations in the source
code or the usage of different compiler flags has to be tracked
manually. The challenge is to automatically identify exactly those
areas that changed in the large amount of trace data.

We propose a novel solution that combines sequence alignment
algorithms with call graph analysis to compare and highlight
traces event-wise. Our approach is able to automatically detect
differences by aligning event traces. Fine-grained execution time
differences can be extracted and displayed in performance charts.
The results of our implementation are presented and discussed.

Keywords-performance analysis, comparison, sequence align-
ment, tracing.

I. INTRODUCTION

Today’s high-end computers contain hundreds of thousands

of cores, pushing the need of application scalability even

further. Rising energy costs and almost constant single core

performance necessitate efficient application implementations.

In order to test and improve implementations, performance

analysis and optimization is a necessary part of the develop-

ment process.

Two key methods for performance optimization are profiling

and tracing. Profiling provides summary information of the

application run. With help of profiling, functions and code

areas that qualify as good candidates for performance opti-

mization can be found. In parallel computing the detection of

many performance problems requires more information than

can be provided by summaries. Such problems can be correctly

identified by an analysis based on event traces. An event is

the occurrence of an application activity, like enter/leave of

a function, MPI messages, or input/output operations to a

file. The generation of event traces requires a monitor to be

attached to the application. During the application run this

monitor writes all activities together with their occurrence time

in a buffer or a file. Event traces allow a detailed insight

into the temporal order of activities of the application. The

analysis methods presented in this paper are based on the

tracing approach.

The comparison of trace files provides additional potential

for the performance optimization and debugging of applica-

tions. This is particularly helpful for the analysis of effects

caused by modifications to the application software or changes

to the hardware environment. One example, on the hardware

side, is that one application is run on different machines

and the performance impact on the application needs to be

analyzed. Here trace files generated for application runs on

each machine could be compared. Another common example,

on the software side, is the analysis of the performance of

different algorithms in order to find the most efficient solution.

By comparing trace files it is possible to analyze every aspect

of changed behavior in the application runs. The impact

of the changes to, e.g., the computation-, network-, or I/O

performance can be analyzed.

The challenge is to track down the performance critical

areas in the possibly large amount of trace data. In terms of

the comparison of two trace files, this task starts with the

identification of areas that are equal or different in both traces

or that are missing in one of the files. In order to identify

these areas we generate function sequences from the trace data

and apply sequence alignment algorithms to them. Sequence

alignment algorithms are heavily used in the life sciences to

align, for example protein- or nucleotide sequences. During

the alignment these algorithms detect equal, different, and

gap areas in the sequences. The required time to calculate an

alignment between two sequences depends on the sequence

lengths. Due to the quadratic computational complexity of

dynamic programming algorithms with respect to sequence

length the alignment of long function call sequences cannot

be computed in reasonable time. For this reason, we combine

the sequence alignment algorithm with the call stack of the

application. By aligning only sub-function sequences that lie

on the same call level, it is possible to cut down the sequence

length considerably. This approach produces valid alignment

results in a reasonable time. Furthermore, it enables the

comparison of trace files generated by real world application

runs.

After successful identification of equal areas it is possible

to generate an exact execution time difference graph for both

traces. This allows to quickly evaluate the impact of changes

on the performance of code segments.

II. RELATED WORK

In the area of performance analysis there are various

approaches that perform the analysis of trace data. Some

2012 10th IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4701-5/12 $26.00 © 2012 IEEE

DOI 10.1109/ISPA.2012.40

247

provide plain display functionality for two traces, others use

compression techniques to handle and analyze large trace data.

The Intel Trace Analyzer [1] provides functionality to

compare two trace files. It displays the two files together in one

view and computes differences and speedups on the basis of

summary information. This summary information is calculated

for user selected ranges in the traces.

Mohror and Karavanic [2] evaluate similarity metrics with

the context of trace file reduction. Aim of this work is to use

redundancy in application runs in order to shrink the required

space for the generated trace files. The evaluated metrics are

capable of identifying similar regions in the trace data. The

identification process is based on predefined regions.

Casas et al. [3] perform analysis of trace data. Using

sampling they construct discrete signals from trace file metrics,

e.g., a signal indicating the number of compute processes.

These signals are used as input for wavelet and correlation

analysis. With help of these methods it is possible to automat-

ically detect application phases and structures and to filter out

regions in the application run that are disturbed by trace buffer

flushes to disk. The results of this analysis are used to identify

iterations in the application run that possibly best represent the

application behavior. Afterwards only these iterations need to

be saved.

Preissl et al. [4] present an algorithm to detect and to extract

communication patterns from MPI event traces. They first use

suffix trees to detect local repeating communication behavior.

Afterwards global communication patterns of the application

are constructed by combining local repeating segments of

multiple processes. This approach can help to identify possible

performance bottlenecks related to the application’s commu-

nication behavior.

Knüpfer et al. [5] propose a solution based on call graphs.

Their approach exploits redundancy in application runs. Repet-

itive call sequences need to be stored only once and can be

found quickly. This solution is capable of identifying equal

patterns in processes.

Ratn et al. [6] developed a scalable tracing method that

exploits redundancy and hence is able to detect similarities.

Due to the compression of the trace, time accuracy is lost in

the trace data.

To our knowledge the solution proposed in this paper is the

only one that uses sequence alignment algorithms for trace

comparison. It is based on call graph analysis and presents

the novelty of using the alignment of two traces to identify

equal, difference and gap areas between application runs.

III. TRACE ALIGNMENT

For the trace file comparison methods described in this

paper we assume similarly behaving applications. This is

the case if one application is traced multiple times. Applied

improvements are unlikely to alter the complete application

structure. For the analysis of traces generated from one appli-

cation it is perfectly reasonable to compare the same processes

of each trace, (i.e., process one of trace A with process one

of trace B). In order to compare two respective processes we

����
���� �

�

����
���� �

� �

	

�

�� � ��� �

�� � �� �� � �
Fig. 1. Construction of function sequences from processes

align them to each other. This allows event-wise matching of

the processes.

We consider areas as equal if they have the same sequence

of function calls in both traces. This means that we do not take

the timing information of the function calls into account. Only

their sequence order must be identical. This measure is needed

because the timing information in multiple trace files is never

exactly the same. Even if the same application is traced two

times on the same machine, the respective traces will differ due

to effects like OS noise, varying network traffic, or different

load on the system. Although their sequence of function calls

is rarely guaranteed to be equal, it is likely to be the same for

large parts the application. The performance characteristics of

those equal areas can be directly compared. Different areas

are sections that contain different function calls at the same

sequence position. For instance, if a call to function a in the

first application run is replaced by a call to function b in the

second application run, these calls would be recognized as

different. For performance analysis the identification of these

areas is important, as the application is probably executing

different code. The third possibility is a missing section, or

a gap, in one trace file. This happens for example if a new

code section is added to the application. If the first trace file

is generated with the original application code and the second

is generated with the additional code, the new code segment

causes a gap in the first trace file. Gaps enable the analyst to

quickly identify code areas that are only present in one of the

traces.

The alignment of the processes is calculated with the

dynamic programming approach [7] [8] [9]. The dynamic

programming algorithm calculates optimal alignments for ar-

bitrary sequences. Hence, sequences need to be constructed

out of the trace data.

Figure 1 illustrates how the sequences are constructed

from the function call structure. In order to be able to align

the sequences, they need to contain unique identifiers for

functions. The most reasonable criteria we found is to use

248

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

��
�
��
��
��
��
��
��
��

��
	
	�
	

��
�
��
��
��
��

�
	�
	�
	�
	
	�
	

��
�
��

��
	

	�
	�
	�
	�
	�
	
	�
	

��
��
	
	�
	�
	�
	�
	�
	�
	�

��
�
	�
	�
	�
	�
	�
	�
	�
	�

��
��
	

	�
	�
	�
	�
	�
	�
	�

��
��
��
	
	�
	�
	�
	�
	�
	�

Fig. 2. Dynamic programming matrix

the function name as basis for the identifier. That way equally

named functions get the same identifier in both sequences,

and therefore make them comparable. The sequences are

constructed by building a list of successive function calls.

In the example described in this section, the following two

sequences are aligned:

Sequence A: m c a c m a m

Sequence B: m c a c b c m b m

The following notation is used: Sequence A is of length M
and sequence B of length N . The ith function call in A is Ai

and the jth function call in B is Bj .

The dynamic programming algorithm breaks down the full

pairwise alignment problem into independently optimizable

sub-problems. The algorithm evaluates alignments with scores.

A recursive scoring scheme is used to find the optimal align-

ment of sub-problems. For the comparison of trace files the

following scores have been chosen:

σi,j = 2 Match Score

σi,j = −1 Mismatch Score

γ = −1 Gap Score

σi,j = 2 is chosen if the function call Ai is the same as Bj ,

otherwise, if Ai differs from Bj then σi,j = −1 is used. In

case that either Ai or Bj are aligned to a gap the gap penalty of

γ = −1 is applied. Based on the scores the following recursive

scoring scheme is defined:

Di,j = max

⎧⎪⎨
⎪⎩

Di−1,j−1 + σi,j , Match/Mismatch

Di,j−1 + γ, Gap in Sequence A

Di−1,j + γ. Gap in Sequence B

In order to keep track of already solved sub-problems a

dynamic programming matrix D is used, Figure 2. The matrix

��
��

����

�
�

�
�

�
�

�
�

�
� �	

	
	 	

	

� ���
Fig. 3. Constructed alignment of sequence A and B

is initialized at the top left corner with D0,0 = 0. The entry

D0,0 gives the start score of the alignment. By applying the

recursive scoring scheme the matrix is filled from the top

left to the bottom right corner. The bottom right entry DM,N

holds the optimal score for the complete alignment of both

sequences. In order to find the optimal alignment, each matrix

field is filled with the highest scoring option from the scoring

scheme. For the construction of the alignment it is useful to

remember what choice led to the optimal score for each field.

In Figure 2 this is indicated with arrows between the matrix

fields.

Backtracking through the matrix allows to find the optimal

sequence alignment. Starting point is the bottom right corner,

which represents the optimal score. Then a path along the

arrows to the top left corner needs to be followed. In case of

multiple possible ways from one to the next field, the highest

scoring field is chosen. The backtracking step is indicated by

the red path in Figure 2. The red path represents the optimal

alignment. If the path goes diagonally both respective se-

quence functions are aligned to each other (Match/Mismatch).

If the path goes vertically, the respective function of sequence

B is aligned to a gap area, if it goes horizontally, the respective

function in sequence A is aligned to a gap area. Figure 3 shows

the constructed optimal alignment of sequence A and B. The

”CMP” bar in the figure marks equal-, different-, or gap areas.

The classical dynamic programming algorithm has quadratic

complexity with respect to the sequence lengths, O(MN),
in time and memory. This renders the alignment of large

sequences impossible due to the limited size of available main

memory. The algorithm proposed by Hirschberg [10] exploits

the fact, that for the computation of each cell Di,j in the

matrix, only cells Di−1,j , Di,j−1, and Di−1,j−1 are needed.

Therefore the algorithm does not have to hold the complete

matrix in memory. The trade off is that some results need

to be computed multiple times. However, this algorithm is

able to calculate the optimal alignment with quadratic time

complexity, O(MN), but with only linear memory complex-

ity with respect to the longest sequence, O(N). Therefore,

the Hirschberg algorithm has been selected to calculate the

optimal alignment.

A. Flat Sequence Alignment

The first approach in order to compare traces is to use

the Hirschberg algorithm to align the complete function call

sequences of two processes. Figure 5 shows an example

comparison.

The ”CMP” bar illustrates the alignment. It marks areas

249

 �
� �

����
����

�	�

� �
� ��

�
��

���

�
��

���

�
��

���

�
��

���

�	�
�	� �	�

�

�

�

�

�

� ��

Fig. 4. Hierarchical alignment algorithm scheme

where both processes execute the same or different functions.

Areas where one process is executing functions that are

missing on the other are marked as gaps.

This approach satisfies the required functionality com-

pletely. Yet, it has a critical downside. Due to the quadratic

time complexity of the algorithm, the alignment of medium to

long function sequences is not computable in reasonable time.

To overcome this drawback a new hierarchical comparison

approach has been developed. This solution is described in

the next section.

B. Hierarchical Alignment

To be able to align, and subsequently compare long applica-

tion runs, the function sequence length has to be reduced. The

truncation of the sequence is not an option, if the complete

application run is to be considered. It is however possible to

split up the sequence into several smaller parts. If the length

of the smaller parts is short enough, the alignment becomes

feasible again. The challenge is to split up the complete

sequence in a reasonable way.

One promising solution appears to be the exploitation of

the already available call tree structure of an application run.

Figure 4 shows how this approach works. Depicted are the

required steps to generate a complete alignment.

While traversing the call tree, sequences are build for sub-

function calls of each function only. This cuts down the

complete sequence length significantly. The alignment of sub-

function call sequences requires no extensive calculation time

anymore. Figure 6 gives an overview of the result of the

hierarchical alignment applied to the example in Section III-A.

The assembly of the sub-alignments to the final flat alignment

��

��

���� � � �� �

� � � � �� � ��

� � � � �

�

�� �

� � �

��� ��	 	

Fig. 5. Comparison of two processes using flat alignment

����

��
��

� � � �

����

��
��

� � �� �

�

��

��

��	�

�

���	�
 �

Fig. 6. Comparison of two processes using hierarchical alignment

follows the call tree structure and is also depicted in Figure 6.

As can be seen, the results for the flat and the hierarchical

alignment are almost equal. There is a small difference though.

The gap area in the flat alignment is one element wider than in

the hierarchical alignment. The reason is that the jump back

from the function c to the functions sub or s is counted as

gap in the flat alignment. This is correct because for the flat

alignment the second gap is needed to align the two sequences

properly. In case of the hierarchical approach the sequences

are aligned accordingly the call tree structure. Here, the second

gap is not required. In the end both methods produce the same

alignment for the given example sequences.

If non-matching areas are detected, our algorithm stops

traversing deeper into the call tree of the respective function.

All sub-function calls of this function are marked as dissimilar.

This prevents unnecessary alignment steps and could improve

the performance of the hierarchical alignment algorithm.

IV. TRACE ALIGNMENT EVALUATION

This section evaluates the proposed hierarchical algorithm.

The time required to calculate an alignment is discussed.

Additionally, the correctness of the resulting alignment is

demonstrated by the comparison of multiple runs of two HPC

applications.

A. Alignment Performance

The measurement of the performance of the flat align-

ment approach is depicted in Figure 7. The graph shows

the expected quadratic behavior of a dynamic programming

algorithm. Most important is the fact, that the compute time

required for the alignment of two sequences of length 20,000

250

Fig. 7. Performance of the flat alignment Fig. 8. Performance of the hierarchical alignment

already exceeds three minutes. In practice even short mea-

surement runs of applications easily produce sequences with

of more than 100,000 elements. This renders the flat alignment

algorithm infeasible for practical use. The calculation of the

alignment of real applications would take much longer than

the actual application runs.

The performance of the hierarchical alignment algorithm,

described in more detail in Section III-B, is primarily influ-

enced by two parts. The first major part is the construction and

the traversal of the call tree. For this step the algorithm builds a

call tree for each application sequence and then traverses them

in parallel. This part can be computed in linear time. During

the traversal of both trees all corresponding nodes are com-

pared. In this step the sub-call sequences held by each node

need to be aligned. This task forms the second performance

relevant part of the algorithm. The alignment of the sub-call

sequences is computed with the Hirschberg algorithm. This

step has quadratic complexity. As a result the performance of

the hierarchical algorithm not only depends on the application

sequence lengths, but also on the sub-call structure of the

application. A function call is represented by one node in the

tree. The sub-sequence length of a node is given by the number

of sub-functions called by the represented function. Critical

are long sub-sequence lengths. Since the sub-sequences are

aligned with the Hirschberg algorithm, its quadratic com-

plexity could dominate the performance if the sub-sequences

are very long. To provide performance characteristics for

the hierarchical algorithm, a benchmark application has been

written. This application generates two function sequences of

variable length. The sequences are assembled by multiple sub-

sequences of similar length. The length of the sub-sequences

is given by the splitting factor. A splitting factor of, e.g., 100

means, that a function sequence of x length is constructed by

multiple sub-sequences of 100 elements length. The generated

two function sequences are then aligned using the hierarchi-

cal alignment algorithm. The benchmark application allows

to analyze how varying sub-sequence lengths influence the

algorithm performance. Figure 8 depicts the measurements

using the benchmark application. The graphs show, that the

hierarchical algorithm calculates the alignment of 16,000,000

elements in less than a minute. This allows to compare even

long application runs in reasonable time. The results depend

on the splitting factor, i.e., the sub-sequence length. One cause

for long sub-sequence lengths is functions that are called in

a loop. If such a loop would create a sufficiently high sub-

sequence length, i.e., above several tens of thousands, the

algorithm shows the performance characteristics of the flat

alignment. Yet, many applications do not produce high sub-

sequence lengths. For instance the Semtex [11] application,

used as example in the next two sections, generates only sub-

sequence lengths ranging from less than ten to a few hundred

elements. For such applications the influence of the parts with

quadratic complexity is only marginal and the hierarchical

algorithm computes the alignment with linear time complexity.

In these cases the proposed algorithm allows the comparison

of application event traces with small computational effort.

B. Alignment Correctness

The correctness of the computed alignments needs to be

evaluated with respect its to suitability for trace file com-

parison. Therefore, the hierarchical alignment algorithm is

used to compare trace files of two real applications. In the

given scenarios the correct alignment and detection of gaps

and differences is tested. The flat alignment algorithm is not

evaluated due to its large computational demand.

The first application used for evaluation is Semtex [11],

a classical quadrilateral spectral element DNS code for nu-

merical fluid mechanics. The Semtex code can be run in

an MPI parallel and a serial version. Using the same input

data we recorded a parallel and a serial application run. The

hierarchical alignment algorithm is used to compare rank 0 of

the MPI version with the serial version. In this comparison

we expect gaps that mark the MPI parts that are missing

in the serial version. Figure 9b shows the comparison result.

Depicted as timelines are the function sequences of the two

application runs. Process 0 A indicates the serial run and

Process 0 B indicates rank 0 of the MPI run. The third time-

line 1 Diff indicates the result of the hierarchical alignment

algorithm. Here, equal parts and gaps are indicated as green

and blue areas, respectively. As can be seen in Figure 9b both

251

(a) Alignment of two molecular dynamic application runs using different code blocks

(b) Alignment of a serial version (Process 0 A) with an MPI parallel version (Process 0 B) of Semtex

Fig. 9. Evaluation of the alignment correctness with two examples. In both examples two processes are aligned using the hierarchical alignment algorithm.
The alignment result is depicted with the Diff 1 bars. Example a shows the aligned sequences of two MD code runs (Process 0 A and Process 0 B). Both
runs differ only in code blocks accel ion mix B0 and accel ion mix B1. These differences are detected correctly. Example b shows the aligned sequences
of a serial- and an MPI run of Semtex. The missing MPI parts in the serial version are detected correctly as gaps.

application runs are aligned correctly. The MPI initialization

and data distribution in the beginning of the MPI version

is marked as gap in the serial version. Then both versions

perform calculations. These areas are marked as equal. In

the end of the application runs the data gathering and MPI

finalization are correctly identified as gaps again.

The second application is a molecular dynamics code (MD

code) [12] developed at Indiana University. The code simulates

the diffusion in dense nuclear matter in white dwarf stars. It is

highly configurable allowing serial, MPI, OpenMP, or hybrid

runs and additional fine-tuning with a range of parameters.

For the alignment algorithm tests the serial version of the

MD code was used. The actual molecular movements are

calculated in two code blocks named A and B. For each code

block exist several different implementations. Each version

is identified with an individual number following the block

name, e.g., A0, A1, A2, B0, B1, etc. We use the hierarchical

alignment algorithm to compare two MD code runs using

different block combinations. The first MD code run used

blocks A0 and B0. The second run used blocks A0 and B1.

Both runs are completely identical except for the described

block combinations. Figure 9a shows the comparison of both

runs. Depicted are the two aligned function sequences of

both code runs (Process 0 A and Process 0 B). Additionally,

the third bar (1 Diff) indicates the result of the hierarchical

alignment algorithm. Equal and differing parts are marked

as green and red areas, respectively. For better readability,

Figure 9a shows only a short interval of the entire sequences.

As can be seen, both application runs are aligned correctly. The

B code blocks, accel ion mix B0 and accel ion mix B1, are

detected correctly as differences. The other equal functions are

matched correctly.

V. ANALYZING EXECUTION TIME DIFFERENCES

The described alignment algorithm enables additional com-

parison opportunities. With the knowledge of the alignment it

is possible to match respective function invocations of multiple

� � �

�

�

��

�

� � �

�

� �

� �

�

�����

� � � 	
 �� ��
�������

��

���
��

��
��
��
�
��

Fig. 10. Generation of an execution time difference timeline

application runs. If functions are matched, their execution time

can be compared one by one. Figure 10 depicts this process.

Two processes are aligned. Then their function sequences can

be arranged together on a timeline. This is done in such a way

that all matching functions start at the same time. Then, as

depicted in Figure 10, an execution time difference chart can

be generated. The values in the chart represent the difference

in execution time between matching functions. Positive values

indicate that process B runs faster, whereas negative values

indicate that process A runs faster.

For evaluation of the proposed methods we performed an

analysis using the Semtex [11] application code. We ran the

code on two machines in order to extract and analyze execution

time differences. Trace A was recorded on an Intel Itanium II
Montecito - 1.6 GHz system and trace B on an Intel Xeon
E5520 - 2.27 GHz system. In order to visualize the results we

display the alignment and the execution time differences with

the tool Vampir [13].

Figure 11 shows the analysis of the Semtex code run.

252

Fig. 11. Alignment of two identical Semtex code runs. Process 0 A and Process 0 B represent the Semtex run on a Montecito and a Xeon system, respectively.
The line chart at the bottom indicates the execution time differences between each matched function pair.

Fig. 12. Execution time difference of one matched modalEnergy function pair. On the Xeon system (Process 0 B) the function runs 986.1 μs faster.

The timeline chart shows the result of the alignment of both

applications. Process 0 A represents the application run on the

Xeon system, Process 0 B the application run on the Montecito

system. As can be seen by the additionally added stream 1 Diff,
both processes are identical. This is the expected result for two

runs of the same Semtex code.

The duration time of trace A and B is 78.371 seconds and

36.784 seconds, respectively. Hence both runs differ in total

execution time by 41.587 seconds. Utilizing the alignment

information all individual function calls can be matched. Of

course, in this particular example function call matching is

trivial, as the call sequences of both application runs are

equal. But, as shown in the previous section, our solution

also allows the matching of call sequences in nontrivial cases

with difference- and gap areas. By comparing the individual

execution time of matched function calls, fine-grained differ-

ences are extracted. The bottom chart in Figure 11 shows this

execution time difference timeline for the Semtex application.

253

As can be seen in the chart the application runs not entirely

faster on one or the other machine. On the contrary, there

are functions that run faster on the Xeon system as well as

others that perform better on the Montecito system. A closer

look reveals that the functions performing output of calculated

data are running faster on the Montecito system. A different

situation exists for functions performing calculations. There,

due to the higher clock frequency and newer architecture,

the Xeon processor performs better. An example is shown in

Figure 12. The execution time difference chart in the bottom

shows that the depicted function invocation modalEnergy runs

almost 1 ms faster on the Xeon system. The exact time

difference of 986.1 μs can be read in the context view located

on the right side of Figure 12.

This approach allows the detection of many kinds of perfor-

mance issues. On the execution timeline chart it is easy to spot

outliers that behave differently. Also differences developing

over time can be quickly detected.

VI. CONCLUSION AND FUTURE WORK

The comparison of event traces has strong potential for the

optimization of applications. The tracking of changes in a large

amount of trace data can be supported by event-wise matching

and comparison.

In this paper we present a novel algorithm for trace file

comparison. By combining call graph analysis with a pairwise

sequence alignment algorithm our approach is able to auto-

matically detect changes between multiple event traces. We

analyze the performance of our implementation with respect

to trace file length and sub-sequence lengths. We also test

the correctness of the alignment results with real application

codes.

An example comparison of the Semtex code proves the us-

ability of our approach for performance optimization. Based on

the results of our algorithm, we extract fine-grained execution

time differences between multiple traces and present them in

a performance timeline chart.

Future tasks include the evaluation of heuristic alignment

algorithms. Combining heuristic algorithms with the hierar-

chical approach might improve its performance and usability.

Particularly in the case of long sub-call-sequences the hierar-

chical algorithm could benefit from heuristics.

Also the analysis of individual processes to enable au-

tomatic matching of processes between multiple traces is

planned.

REFERENCES

[1] Intel Trace Analyzer and Collector (website). [Online]. Available:
http://software.intel.com/en-us/articles/intel-trace-analyzer/

[2] K. Mohror and K. L. Karavanic, “Evaluating similarity-based trace
reduction techniques for scalable performance analysis,” in Proceedings
of the Conference on High Performance Computing Networking, Storage
and Analysis, ser. SC ’09, Portland, Oregon, 2009, pp. 55:1–55:12.

[3] M. Casas, R. M. Badia, and J. Labarta, “Automatic phase detection and
structure extraction of MPI applications,” International Journal of High
Performance Computing Applications, vol. 24, no. 3, pp. 335–360, 2010.

[4] R. Preissl, T. Kockerbauer, M. Schulz, D. Kranzlmuller, B. Supinski,
and D. Quinlan, “Detecting patterns in MPI communication traces,” in
Parallel Processing, 2008. ICPP ’08. 37th International Conference on,
2008, pp. 230–237.

[5] A. Knüpfer, B. Voigt, W. E. Nagel, and H. Mix, “Visualization of repet-
itive patterns in event traces,” in Proceedings of the 8th international
conference on Applied parallel computing: state of the art in scientific
computing, ser. PARA’06, Umeå, Sweden, 2007, pp. 430–439.

[6] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz, “Preserving time
in large-scale communication traces,” in Proceedings of the 22nd annual
international conference on Supercomputing, ser. ICS ’08, Island of Kos,
Greece, 2008, pp. 46–55.

[7] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 2010.

[8] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[9] D. Gusfield, “Algorithms on stings, trees, and sequences.” Computer
Science and Computational Biology, 1997.

[10] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Commun. ACM, vol. 18, no. 6, pp. 341–343,
June 1975.

[11] Semtex spectral element Fourier code (website). [Online]. Available:
http://users.monash.edu.au/∼bburn/semtex.html

[12] C. Horowitz, J. Hughto, A. Schneider, and D. Berry, “Neutron star crust
and molecular dynamics simulation,” 2011.

[13] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler, “Performance op-
timization for large scale computing: The scalable VAMPIR approach,”
in International Conference on Computational Science (2), 2001, pp.
751–760.

254

